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    Abstract— This work deals with the computational techniques 

for solving initial boundary value problems in parabolic partial 

differential equations. The whole idea of the techniques is based 

on the replacement of the time derivative by the finite difference 

approximation and the space derivative by the cubic spline 

recursive relation. The resulting equations were than perturbed by 

Chebyshev polynomials which increased the number of unknown 

constants with extra computational efforts. Numerical examples 

are given to illustrate the effectiveness of the methods. 

 

      Index Terms – Parabolic partial differential equations, 

Chebyshev polynomials, Collocation, Perturbed, Standard, 

Maximum errors, Schemes. 

I. INTRODUCTION 

  Problems involving time t as one independent variable 

lead usually to parabolic equation. The simplest parabolic 

equation  derives form the theory of heat 

conduction and its solution gives, for example, the 

temperature u at a distance x unit of length from one end of a 

thermally insulted bar after t seconds of heat conduction. In 

such a problem the temperatures at the ends of a bar length  

are often known for all time. To specify a unique solution to 

this type of problem, additional conditions must be imposed 

upon its solution function. Typically these conditions occur 

in the form of boundary values that are prescribed on all or 

part of the perimeter of the region in which the solution is 

sought. Therefore, the nature of the boundary and boundary 

values are usually the determining factors in setting up an 

appropriate numerical scheme for obtaining the approximate 

solution. 

1. Standard Explicit and Implicit Schemes 

We shall consider two dimensional second-order equation  

(2.1) 

If we assume that substitution has been made such that  

, then, equation (2.1) reduces to the form:  

                      (2.2)   

Equation (2.2) is subject to the following initial and boundary conditions respectively. 

             (2.3) 

                    (2.4) 

Where ,  and  are known functions when a function u and its derivatives are single-valued, finite and 

continuous function of x, then by Taylor’s theorem, 

     (2.5) 

     (2.6) 

Addition and subtraction of equations (2.5) and (2.6) give the equation of the respective forms: 

     (2.7) 

       (2.8) 

For simplicity, denote 

            (2.9) 

Thus substituting equations (2.7) and (2.8) in form of equation (2.9) into equation (2.2), we have: 

      (2.10) 

Letting       (2.11) 

Putting equation (2.11) in equation (2.10) and after simplification, we have 
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 (2.12) 

The formula (2.12) is a general explicit representation to (2.2) 

A more general implicit scheme is that due to Crank-Nicolson and is given by 

     (2.13) 

Simplifying equation (2.13), we obtain 

(2.14) 

 

 

2. Standard Implicit Method By Cubic Spline 

With reference to the set of data points  

 Where , we define a cubic spline  such  

            that  

     By assuming equal internal,  

   

      (3.2) 

Where   and   

Differentiating equation (3.2) with respect to x and substituting  , we get 

 (3.3) 

Similarly, 

    (3.4) 

In order to ensure continuity of   at , equations (3.3) and (3.4) must be same. This equality gives the 

recurrence relation for . 

 (3.5) 

Thus equation (3.5) constitutes (n – 1) equation in (n+1) unknowns. 

In a similar manner, combination of equations (3.3) and (3.4) in a suitable manner yield a recurrence relation for  

which is given as: 

   (3.6) 

Analogously with equations (3.5) and (3.6), the following relations hold 

 
And 

 
Substituting equation (3.7) and (3.8) into equation (2.2), we have 

Thus, equation (3.9) is referred to as the standard implicit formula by cubic spline. 

 

3. Perturbed Implicit Collocation method 

When equation (2.2) is slightly perturbed, it gives 

  
     (4.1) 

Where  

      
 (4.2) 

 is the shifted Chebyshev polynomial of degree N 

defined by 

   
 (4.3) 

Substituting equation (4.2) in equation (4.1), we obtain 
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  (4.4) 

Using the recurrence relation for  and  in equation (4.4) after simplification we obtain 

 

 

 

    (4.5) 

Collocating equation (4.5) at point  ,where ,  and substituting the values of 

  
and 

    (4.6) 

into equations (4.5), we get 

 

  

   (4.7) 

The following two equations shall be added to equation (4.7) to make it complete. 

The equations are as follows: 

   (4.8) 

Altogether, equation (4.7) with equation (4.8) comprise a set of (N + 2) algebraic equation in (N + 2) unknowns. 

Thus, the (N + 2) equations can be put in matrix form as 

AY =  B         (4.9) 

Where 

 
A = 

  

     

     

  

    Thus, the above systems of equations can be solved using Gaussian elimination method. 

 

II. NUMERICAL EXAMPLE 

A.  Example 1: 

  

   ) = Sin x 

Taking 

 

Analytical solution is     

In all cases, we have defined our errors as: 

   

     

TABLE I: Errors for example 1 at the point of symmetry 

No of time step Spline Solution Perturbed Solution 

Case N = 2 Case N = 4 Case N = 6 

1 1.2 x 10-3 8.50 x 10-4 7.76 x 10-4 3.99 x 10-4 

2 2.3 x 10-5 1.70 x 10-3 1.638 x 10-3 3.6 x 10-4 

3 3.4 x 10-5 2.57 x 10-3 2.552 x 10-3 3.6 x 10-4 
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4 4.4 x 10-5 3.44 x 10-3 3.497 x 10-3 5.3 x 10-3 

5 5.5 x 10-5 4.463 x 10-3 4.463 x 10-3 1.107 x 10-3 

6 5.6 x 10-5 5.23 x 10-3 5.442 x 10-3 1.735 x 10-3 

7 7.7 x 10-5 6.12 x 10-3 6.431 x 10-3 2.393 x 10-3 

8 8.6 x 10-5 7.570 x 10-3 7.426 x 10-3 3.069 x 10-3 

B. Example 2: 

  

    

Taking  

Analytical solution is  

 

TABLE II: Errors for example 2 at the point of symmetry 

No of time step Spline Solution Perturbed Solution 

Case N = 8 Case N = 9 

1 5.64 x 10-4 2.4179 x 10-2 2.4913 x 10-2 

2 1.211 x 10-3 4.8493 x 10-2 2.0483 x 10-2 

3 1.665 x 10-3 6.2676 x 10-2 1.8993 x 10-2 

4 2.038 x 10-3 7.4811 x 10-2 1.7351 x 10-2 

5 2.335 x 10-3 8.4872 x 10-2 1.6035 x 10-2 

6 2.562 x 10-3 9.3792 x 10-2 1.4893 x 10-2 

7 2.727 x 10-3 1.01776 x 10-1 1.3908 x 10-2 

8 2.839 x 10-3 1.09003 x 10-1 1.3056
 x 10-2 

III. CONCLUSION 

The computation techniques in parabolic equations have 

been described. The methods were shown to be accurate, 

efficient and general in application for solving heat model 

problems. In particular, we observed that as the values of N 

increases, the solutions of the perturbed method approaches 

analytical solution. The methods were good for the examples 

considered and the extra work done in solving matrices 

equations were compensated for in terms of the maximum 

errors value obtained as these can be seen from the tables of 

results shown. 
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