Introduction

Solar Energy, radiation produced by nuclear fusion reactions deep in the Sun’s core. The Sun supplies almost all the heat and light to Earth and maintains the earth's temperature. Nowadays, people are using solar energy as one of their main sources of electricity. Using solar power to generate electricity is increasing whereas no other solution is left. Consequently, more and more people are using solar energy as their main source of electricity. Using solar cells, solar panels manage to trap huge amounts of energy every single day. When the solar panels produce power which is not required, customers can get hold of that energy in an instant, whenever they oblige it. People whoever looking for savings and the future of the planet should indeed look into solar energy.

A. BACKGROUND

Crisis of electricity is a major problem in the present era. This problem is even more critical for a densely populated poverty corrupted developing third world country like ours. Many of our people live here without the basic facility of electricity. In some area outside the city side, there is general electricity service called PALLI BIDYUT which can supply a very limited amount of electricity in that area that is unable to cover up the basic demand of people from that area. Day by day crisis of electricity is increasing whereas no other solution is left for us without using the solar power or wind turbine to generate electricity. Again, not only we face electricity crisis but also day by day the cost of gas and other natural resources like fuel, diesel, petroleum etc. are rising so that it is going beyond the affordability of general people. Thereby such a system that can not only reduce the electricity crisis but also the crisis of petroleum or other natural resources for driving vehicles is desirable. We have designed a whole Central Solar Battery Charging Station.
Station (CSSHS) along with the successful implementation of hardware and software to represent all activities not only visually but also can be monitored and controlled from remote region. Implementation of SSHS for also includes designing of a smart charge controller with a view to decrease the battery charging time, making it capable of charging more than one battery at a time and getting the desired current from the load.

B. MOTIVATION

Ours is a tropical country where the amount of sunlight is mostly available to meet up the demand of producing electricity. This type of project is not new but for our country of this can be implemented successfully for commercial purpose, it can bring a revolutionary change in the lifestyle and the economical prospectus that also can increase the GDP of Bangladesh. As ours is a massively power-deficient country with peak power shortages of around 25%. More than 60% of its people do not have access to the power grid. The country only produces 3500-4200 MW of electricity against a daily demand for 4000-5200 MW on average, according to official estimates. Solar energy is an ideal solution as it can provide griddles power and is totally clean in terms 12 of pollution and health hazards. Since it saves money on constructing electricity transmission lines, it’s economical as well. The solar panel providers in Bangladesh are now expecting the price of batteries and accessories to drastically reduce. Moreover, after the current budget of 2012 the price for per unit electricity will be amplified more. It is flattering tougher for ordinary mass to cope up with the mounting price of per unit electricity of PDB. So the best alternative is to development of SSHS in our country effectively.

Considering all these we are motivated to do this project as it will help our people in several ways. Our people are not too much efficient in monitoring. We can make use of software available too. Through monitoring we can control our system from remote areas thereby efficiently that paves us to do the development of software implementation thereby.

II. FEATURES OF SOLAR PANEL

1) We can charge the batteries used in solar home system or in IPS in our station and our well developed monitoring software will save the batteries from further destructions caused by the system.
2) Our charging station can be used to charge any battery including Rickshaw battery or batteries used in Solar Home System either in rental or in monthly payment basis.
3) Electric lanterns used in village area can be charged as well.
4) First objective of this thesis is to identify reasons for the failures of existing charge control algorithms that utilize existing technologies.
5) The next goal of the thesis is to create new charge control algorithms that will overcome the issue of false detection while protecting the battery from repetitive overcharges. We present a new voltage based charge control algorithm.
6) Ways to increase the charging speed are critical in this application as well as in most of other applications since portable solar panel generally have low power production per square meter. So, this research also develops ways to optimize solar panels” output power while charging the batteries.
7) Our software is able to eliminate costs.
8) Followed by some other countries we can also replace kerosene station with Solar Battery Charging Station too with further modification.

A. PV PANEL

In a photovoltaic cell, light excites electrons to move from one layer to another through semi-conductive silicon materials. This produces an electric current. Solar cells called photovoltaic’s made from thin slices of crystalline silicon, gallium arsenide, or other semiconductor materials convert solar radiation directly into electricity. Cells with conversion efficiencies greater than 30 percent are now available. By connecting large numbers of these cells into modules, the cost of photovoltaic electricity has been reduced to 20 to 30 cents per kilowatt-hour. Americans currently pay 6 to 7 cents per kilowatt-hour for conventionally generated electricity. The simplest solar cells provide small amounts of power for watches and calculators. More complex systems can provide electricity to houses and electric grids. Usually though, solar cells provide low power to remote, unattended devices such as buoys, weather and communication satellites, and equipment aboard spacecraft.

B. CHARGE CONTROLLER

A charge controller, charge regulator or battery regulator limits the rate at which electric current is added to or drawn from electric batteries. It prevents overcharging and may prevent against overvoltage, which can reduce battery performance or lifespan, and may pose a safety risk. It may also prevent completely draining (“deep discharging”) a battery, or perform controlled discharges, depending on the battery technology, to protect battery life. The terms “charge controller” or “charge regulator” may refer to either a stand-alone device, or to control circuitry integrated within a battery pack, battery-powered device, or battery recharger.

Charge controllers are sold to consumers as separate devices, often in conjunction with solar or wind power generators, for uses such as RV, boat, and off-the-grid home battery storage systems. In solar applications, charge controllers may also be called solar regulators.

A series charge controller or series regulator disables further current flow into batteries when they are full. A
shunt charge controller or shunt regulator diverts excess electricity to an auxiliary or “shunt” load, such as an electric water heater, when batteries are full. 15 Simple charge controllers stop charging a battery when they exceed a set high voltage level, and re-enable charging when battery voltage drops back below that level. Pulse width modulation (PWM) and maximum power point tracker (MPPT) technologies are more electronically sophisticated, adjusting charging rates depending on the battery's level, to allow charging closer to its maximum capacity. Charge controllers may also monitor battery temperature to prevent overheating. Some charge controller systems also display data; transmit data to remote displays, and data logging to track electric flow over time.

![Fig. 1: Charge controller and battery wiring](image)

C. BATTERY

Battery condition and corresponding state of charge that we gathered from reading of formerly used batteries for solar system is used to measure the PWM states. It’s crucial to follow the ratings in our design so that it may work well with batteries from any organization. The following chart represents a clear idea about automotive battery condition that are generally used including charging and discharging both:

<table>
<thead>
<tr>
<th>Table 1: Battery State of charge</th>
<th>12 V Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Of Charge</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>11.58</td>
</tr>
<tr>
<td>30%</td>
<td>11.75</td>
</tr>
<tr>
<td>40%</td>
<td>11.9</td>
</tr>
<tr>
<td>50%</td>
<td>12.06</td>
</tr>
<tr>
<td>60%</td>
<td>12.20</td>
</tr>
<tr>
<td>70%</td>
<td>12.32</td>
</tr>
<tr>
<td>80%</td>
<td>12.42</td>
</tr>
<tr>
<td>90%</td>
<td>12.5</td>
</tr>
<tr>
<td>100%</td>
<td>12.7</td>
</tr>
</tbody>
</table>

III. SYSTEM DESCRIPTION

Solar Home System (SHS) generally have a common design and consists of the following components:

1. A PV Generator composed of one or more PV modules, which are interconnected to form a DC power-producing unit.
2. A mechanical support structure for the PV generator.
3. A 12V lead acid battery.
4. A charge controller to prevent deep discharges and overcharges of the battery.
5. Loads (LED lamps)
6. Wire connections (Cable, switches and connection box.)

Our whole project consists of two groups.
1. Hardware Implementation
2. Software Implementation

This paper is on the design and implementation of the solar charge controller. For the Solar Battery Charging Station (SBCS), the proposed CARG project has the overall implementation and monitoring system for the Solar Home System (SHS). Each component of the system must fulfill the quality and requirements. Size, voltage thresholds of the charge controller, the quality of installation etc directly affects the lifetime of batteries and lamps.

A. Solar Panel

The use of the Sun as an alternative means to provide electrical energy has always been around us. Solar Power generation has emerged as one of the most rapidly growing renewable sources of electricity. Photovoltaic is a most elegant energy source. Light shines on a crystal and produces electricity. It is as simple as that. There are no moving parts. The fuel source (sunlight) is free, abundant and widely distributed, available to every country and person in the world. At over 165,000 TW the solar resource dwarfs the world’s current power usage of 16 TW or even our projected future usage of 60 TW. Doing serious battery charging with solar energy isn’t that difficult. Actually, the most critical component aside from the solar panel itself - is a solar charge controller, which is available from many manufacturers. This device protects the battery from being overcharged, which can reduce its life. With a charge controller in hand, setting up a photovoltaic battery charging system is really a simple wiring procedure.

B. Battery

Solar batteries produce electricity by a photoelectric conversion process. The source of electricity is a photosensitive semiconducting substance such as a silicon crystal to which impurities have been added. When the crystal is struck by light, electrons are dislodged from the surface of the crystal and migrate toward the opposite surface. There they are collected as a current of electricity. Solar batteries have very long lifetimes and are used chiefly in spacecraft as a source of electricity to operate the equipment aboard.

The battery was rechargeable and of lead-acid systems. It should not be overcharged. Otherwise, the battery is completely sealed, maintenance-free and leak proof. It was rated as 12v and 80Ah. It should not be discharged below 80%

Very simple basic rules for charging the lead-acid batteries (the voltages mentioned are valid for 6 cell, 12V batteries):
• disconnect the load when the battery voltage decreases below typically 10.5V when loaded,
• It is possible to charge the battery indefinitely (float charging or also called preservation charging), if its voltage is kept below certain threshold (varies according to battery type between 13.4 and 13.8V),
• When cycled (going through charging and discharging phases consecutively), the battery termination voltages are higher than when charging indefinitely (14.2 to 14.5V),
• It is not good to charge battery beyond the gassing voltage (about 14.4V) for longer periods of time,
• It is good to change the voltage levels according to battery temperature, as the voltage values have a significant temperature characteristics,
• it is safe to charge most of lead-acid batteries by currents up to C/10h, where C is the battery capacity in Ah. However, the ideal charging of lead-acid batteries consists of three stages: constant-current charge, topping charge and float charge. Battery voltage and current levels per cell during these stages are illustrated in Figure 3.1. Most of the energy is transferred to the battery during the first stage. The second stage overcharges the battery a little while the current decreases. This is important to recharge battery to 100% of its previous capacity. The losses due to self-discharge are compensated during the last stage.

Fig. 2. Battery discharge profile

C. Charger Unit

1. Charge Controller

The primary function of a charge controller in a Solar Home System (SHS) is to maintain the battery at highest possible state of charge, when PV module charges the battery the charge controller protects the battery from overcharge and disconnects the load to prevent deep discharge. Ideally, charge controller directly controls the state of charge of the battery.

Without charge control, the current from the module will flow into a battery proportional to the irradiance, whether the battery needs to be charging or not. If the battery is fully charged, unregulated charging will cause the battery voltage to reach exceedingly high levels, causing severe gassing, electrolyte loss, internal heating and accelerated grid corrosion. Actually charge controller maintains the health and extends the lifetime of the battery.

2. Pulse Width Modulation (PWM)

Pulse Width Modulation (PWM) [12] controls adjusts the duty ratio of the switches as the input changes to produce a constant output voltage. The DC voltage is converted to a square-wave signal, alternating between fully on and zero. By controlling analog circuits digitally, system costs and power consumption can be drastically reduced. In nowadays implementation, many microcontrollers already include on-chip PWM controllers, making implementation easy. Concisely, PWM is a way of digitally encoding analog signal levels. PWM control can be used in two ways: voltage-mode and current-mode. In voltage mode, control the output voltage increases and decreases as the duty ratio increases and decreases. The output voltage is sensed and used for feedback. If it has two-stage regulation, it will first hold the voltage to a safe maximum for the battery to reach full charge. Then it will drop the voltage lower to sustain a “finish” or “trickle” charge. Two-stage regulating is important for a system that may experience many days or weeks of excess energy (or little use of energy). It maintains a full charge but minimizes water loss and stress. The voltages at which the controller changes the charge rate are called set points. When determining the ideal set points, there is some compromise between charging quickly before the sun goes down, and mildly overcharging the battery. The determination of set points depends on the anticipated pattern of use, the type of battery, and to some extent, the experience and philosophy of the system designer or operator.

Determine the duty cycle, D to obtain required output voltage.

\[
D = \frac{V_o}{V_d}
\]

Where, \(D\) = Duty cycle, \(V_o\) = Voltage output, \(V_d\) = Voltage input, \(D = 12V/17.4V \Rightarrow D = 0.7 \Rightarrow \%D = 70\%\)

3. Microcontroller

A microcontroller [13] is a small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals. The Program memory in the form of NOR flash or OTP ROM is also often included on chip, as well as a typically small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications. Microcontrollers [11] are used in automatically controlled products and devices, such as automobile engine control systems, implantable medical devices, remote controls, office machines, appliances, power tools, toys and other embedded systems. By reducing the size and cost compared to a design that uses a separate microprocessor, memory, and input/output devices,
microcontrollers make it economical to digitally control even more devices and processes. In this project is used PIC 16F72 Microcontroller [10] and PIC 16F616 [7].

D. Advantage used of Microcontroller

Microcontrollers, as stated, are inexpensive computers. The microcontroller has the ability to store and run a unique program which makes it extremely versatile. For instance one can program a microcontroller to make decisions based on predetermined situations and selections. The microcontroller has ability to perform math and logic functions allows it to mimic sophisticated logic and electronic circuit.

IV. MICRO C CODING

Programming the PIC

These PIC microcontrollers can be programmed in high-level languages or in their native machine language (Assembly). In this thesis the C language was chosen, using the software MICRO C. The advantages of C language consist of better control and greater efficiency. Another reason for using C language is that the interface with the programmer is quite simple and easy to understand.

V. CHARGE CONTROLLER ALGORITHM

The charge controller algorithm is shown in flow chart below:

A. Circuit Components

There is no panel or similar instrument available in PROTEUS. Therefore, a DC current source represented the panel. The source had constant current of 5A. The voltage regulator 7805 was omitted from the simulation, as there is no pin 19 or VDD pin in PIC16F876A[] in PROTEUS. The purpose of the voltage regulator is to feed 5V to the microcontroller. Above this voltage microcontroller will burn.

A digital oscilloscope was connected to get the view of PWM. The digital oscilloscope is a virtual instrument that is available in PROTEUS VSM. It has four channels. Channel A is the channel that shows square waves.

B. Schematic Circuit

After the all components of the circuit have been added, the simulation was done. It was done using different values of the battery. With each battery value the value in digital oscilloscope was recorded. It corresponds to the exact value of the PWM.

C. Simulation Result

PROTEUS VSM comes with the facility of using Virtual Instrument. Oscilloscope was used to get the PWM output from CCP1 pin. The CCP1 pin generates square waves. Therefore, the 13th pin of the microcontroller was connected to the Channel A of the oscilloscope. The output of three different voltage of the battery cell is given here.
VI. DESIGN

In order to design a smart charge controller, the following circuit was simulated in ISIS PROFESSIONAL. The PIC16F616 [7] microcontroller can convert input voltage into PWM signal. The PWM signal range was 0 to 100%. There was an IRFZ44N MOSFET [9] for switching between battery and panel. The simulation result was similar to the practical result.

The charge controller can be devised in several stages, so that the simple guidelines for charging are met in the prototype stage. After this functionality is implemented and verified, the algorithms to achieve ideal charging (described above) can be implemented to improve the quality of charging process. From the basic guidelines it is clear, that the minimum functionality that the hardware of the controller has to implement is voltage measurement and switching off the load and input from solar panel.

A. Charge Controller Types

Two basic charge controller types exist:

1. Shunt-Interrupting Design

The shunt-interrupting controller completely disconnects the array current in an interrupting or on-off fashion when the battery reaches the voltage regulation set point. When the battery decreases to the array reconnect voltage, the controller connects the array to resume charging the battery. This cycling between the regulation voltage and array reconnect voltage is why these controllers are often called „on-off“ or „pulsing“ controllers. Shunt-interrupting controllers are widely available and are low cost, however they are generally limited to use in systems with array currents less than 20 amps due to heat dissipation requirements. In general, on-off shunt controllers consume less power than series type controllers that use relays (discussed later), so they are best suited for small systems where even minor parasitic losses become a significant part of the system load. Shunt-interrupting charge controllers can be used on all battery types; however the way in which they apply power to the battery may not be optimal for all battery designs. In general, constant-voltage, PWM or linear controller designs are recommended by manufacturers of gelled and AGM lead-acid batteries. However, shunt-interrupting controllers are simple, low cost and perform well in most small stand-alone PV systems.

2. Shunt-Linear Design

Once a battery becomes nearly fully charged, a shunt-linear controller maintains the battery at near a fixed voltage by gradually shunting the array through a semiconductor regulation element. In some designs, a comparator circuit in the controller senses the battery voltage, and makes corresponding adjustments to the impedance of the shunt element, thus regulating the array current. In other designs, simple Zener power diodes are used, which are the limiting factor in the cost and power ratings for these controllers. There is generally more heat dissipation in a shunt-linear controller than in shunt-interrupting types. Shunt-linear controllers are popular for use with sealed VRLA batteries. This algorithm applies power to the battery in a preferential method for these types of batteries, by limiting the current while holding the battery at the regulation voltage.

3. Series Controller

In a series controller, a relay or solid-state switch either opens the circuit between the module and the battery to discontinuing charging, or limits the current in a series-linear manner to hold the battery voltage at a high value. In the simpler series interrupting design, the controller reconnects the module to the battery once the battery falls to the module reconnect voltage set point [6].

4. Functions of Battery Charge Controller Series-Interrupting Design

The most simple series controller is the series-interrupting type, involving a one-step control, turning the array charging current either on or off. The charge controller constantly monitors battery voltage, and disconnects or open-circuits the array in series once the battery reaches the regulation voltage set point. After a
pre-set period of time, or when battery voltage drops to the array reconnect voltage set point, the array and battery are reconnected, and the cycle repeats. As the battery becomes more fully charged, the time for the battery voltage to reach the regulation voltage becomes shorter each cycle, so the amount of array current passed through to the battery becomes less each time. In this way, full charge is approached gradually in small steps or pulses, similar in operation to the shunt-interrupting type controller. The principle difference is the series or shunt mode by which the array is regulated. Similar to the shunt-interrupting type controller, the series-interrupting type designs are best suited for use with flooded batteries rather than the sealed VRLA types due to the way power is applied to the battery.

5. Series-Interrupting, 2-step, Constant-Current Design

This type of controller is similar to the series-interrupting type, however when the voltage regulation set point is reached, instead of totally interrupting the array current, a limited constant current remains applied to the battery. This „trickle charging” continues either for a pre-set period of time, or until the voltage drops to the array reconnect voltage due to load demand. Then full array current is once again allowed to flow, and the cycle repeats. Full charge is approached in a continuous fashion, instead of smaller steps as described above for the on-off type controllers. A load pulls down some two-stage controls increase array current immediately as battery voltage. Others keep the current at the small trickle charge level until the battery voltage has been pulled down below some intermediate value (usually 12.5-12.8 volts) before they allow full array current to resume.

B. Overcharge Protection

In a 12 V battery system the voltage vary between 10.5 volts and 14.4 volts, depending on the actual state of charge of the battery, charge current, discharge current, type and age of the battery.

When a normal full loaded battery and no charging or discharging current is flowing than the battery voltage is about 12.4 volts to 12.7 volts, when charging current is flowing the voltages jump to a higher level e.g. 13.7 V (depending on the current), when loads are switched on the voltage drops down to a lower lever e.g. 12.0volts or 11.8 volts (also depending on the current).

The PV module produces energy and the current is flowing into the battery so voltage level increases up to the range of 14.4 volts. Then over charge protection starts the work. When the battery voltage level is 14.4 volts, the charge controller is switched off the charging current or reduced it (by pulse wide modulation).

C. Deep Discharge Protection

When a battery is deeply discharged, the reaction in the battery occurs close to the grids, and weakens the bond between the active materials and the grids. When we deep discharge the battery repeatedly, loss of capacity and life will eventually occur. To protect battery from deep discharge, most charge controllers include an optional feature 36 to disconnect the system loads once the battery reaches a low voltage or low state of charge condition.

If the voltage of the system falls below 11.5 volts for a period of minimum 20 sec than the charge controller will be switched off for minimum 30 seconds. Than all loads which are connected to the controller is off. If the battery voltage increase above 12.5volts for more than 20 seconds than the charge controller will be switched ON the loads again for a minimum time of 30 seconds. The delay of 30 seconds is integrated to protect the system against a swinging situation.

D. Charge Controller Set Points

Controller set points are the battery voltage levels at which a charge controller performs control or switching functions. Four basic control set points are defined for most charge controllers that have battery overcharge and over discharge protection features. The voltage regulation (VR) and the array reconnect voltage (ARV) refer to the voltage set points at which the array is connected and disconnected from the battery. The low voltage load disconnect (LVD) and load reconnect voltage (LRV) refer to the voltage set points at which the load is disconnected from the battery to prevent over discharge. The basic controller set points on a simplified diagram plotting battery voltage versus time for a charge and discharge cycle. A detailed discussion of each charge controller set point follows.

1. High Voltage Disconnect (HVD) Set Point

The high voltages disconnect (HVD) set point is one of the key specifications for charge controllers. The voltage regulation set point is the maximum voltage that the charge controller allows the battery to reach, limiting the overcharge of the battery. Once the controller senses that the battery reaches the voltage regulation set point, the controller will either discontinue battery charging or begin to regulate the amount of current delivered to the battery.

2. Array Reconnect Voltage (ARV) Set Point

In interrupting (on-off) type controllers, once the module or array current is disconnected at the voltage regulation set point, the battery voltage will begin to decrease. If the charge and discharge rates are high, the battery voltage will decrease at a greater rate when the battery voltage decreases to a predefined voltage, the module is again reconnected to the battery for charging. The voltage at which the module is reconnected is defined as the array reconnects voltage (ARV) set point.
3. Voltage Regulation Hysteresis (VRH)

The voltage differences between the high voltages disconnect set point and the array reconnect voltage is often called the voltage regulation hysteresis (VRH). The VRH is a major factor which determines the effectiveness of battery recharging for interrupting (on-off) type controller. If the hysteresis is too big, the module current remains disconnected for long periods, effectively lowering the module energy utilization and making it very difficult to fully recharge the battery. If the regulation hysteresis is too small, the module will cycle on and off rapidly. Most interrupting (on-off) type controllers have hysteresis values between 0.4 and 1.4 volts for nominal 12 volts systems.

4. Low Voltage Load Disconnect (LVD) Set Point

Deep discharging the battery can make it susceptible to freezing and shorten its operating life. If battery voltage drops too low, due to prolonged bad weather or certain non-essential loads are connected the charge controller disconnected the load from the battery to prevent further discharge. This can be done using a low voltage load disconnect (LVD) device is connected between the battery and non-essential loads. The LVD is either a relay or a solid-state switch that interrupts the current from the battery to the load.

5. Load Reconnect Voltage (LRV) Set Point

The battery voltage at which a controller allows the load to be reconnected to the battery is called the load reconnect voltage (LRV). After the controller disconnects the load from the battery at the LVD set point, the battery voltage rises to its open-circuit voltage. When the PV module connected for charging, the battery voltage rises even more. At some point, the controller senses that the battery voltage and state of charge are high enough to reconnect the load, called the load reconnect voltage set point. LRV should be 0.08 V/cell (or 0.5 V per 12 V) (see [1]) higher than the load-disconnection voltage. Typically LVD set points used in small PV systems are between 12.5 volts and 13.0 volts for most nominal 12 volt lead-acid battery. If the LRV set point is selected too low, the load may be reconnected before the battery has been charged.

6. Low Voltage Load Disconnect Hysteresis (LVLH)

The voltage difference between the low voltage disconnect set point and the load reconnect voltage is called the low voltage disconnect hysteresis. If the low voltage disconnect hysteresis is too small, the load may cycle on and off rapidly at low battery state-of-charge (SOC), possibly damaging the load or controller, and extending the time it required to charge the battery fully. If the low voltage disconnect hysteresis is too large the load may remain off for extended periods until the array fully recharges the battery.

D. Charger Circuit

![Fig 11. The charger circuit](image)

The charger circuit for the SSHS project is microcontroller based and controls the MOSFET[8] switching. It follows the requirements stated above. It can automatically disconnect at HVD and recharge at LVD.

E. PCB Implementation

![Fig 12. PCB Implementation](image)

The PCB (Printed Circuit Board) was implemented to make the charge controller board.

VII. EXPERIMENTAL RESULT

A. Balance of System (BOS)

BOS stands for balance of system, which is used for all non-photovoltaic parts of a PV system. They contribute significantly to the overall system and getting these wrong can seriously damage the system. BOS components can be separated into electrical and mechanical components.

The electrical components are: 1) Cables. 2) Fuses. 3) Earthing. 4) Lightning Protection. 5) Battery. 6) Charge Regulation. Mechanical components are module support structure and tracing system.

B. Experiments on Different Charge Controller
Two different battery charge controller (a) Rahimafrooz charge controller, (b) Galchip charge controller both product of Bangladesh have been collected and tested. We observed the behavior of the two different charge controllers.

The galchip charge controller was tested for primary requirements. It was tested for over current and overcharged protection. It did not have the IDCOL protections. It did not have the reverse leakage current.

![Fig.13. Off load test](image)

Table 2. Charge Controller off Load Test

<table>
<thead>
<tr>
<th>Vrb</th>
<th>Ib</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.98</td>
<td>5.83</td>
<td>29.03</td>
</tr>
<tr>
<td>6</td>
<td>7.08</td>
<td>42.48</td>
</tr>
<tr>
<td>6.96</td>
<td>8.24</td>
<td>57.35</td>
</tr>
<tr>
<td>7.99</td>
<td>8.92</td>
<td>71.271</td>
</tr>
<tr>
<td>8.97</td>
<td>9.5</td>
<td>85.22</td>
</tr>
<tr>
<td>9.93</td>
<td>10.01</td>
<td>99.399</td>
</tr>
<tr>
<td>10.91</td>
<td>11.38</td>
<td>124.156</td>
</tr>
<tr>
<td>11.9</td>
<td>7.08</td>
<td>84.25</td>
</tr>
<tr>
<td>12.96</td>
<td>7.69</td>
<td>99.66</td>
</tr>
<tr>
<td>13.97</td>
<td>8.28</td>
<td>115.672</td>
</tr>
<tr>
<td>14.96</td>
<td>9.4</td>
<td>140.62</td>
</tr>
<tr>
<td>15.89</td>
<td>9.95</td>
<td>158.106</td>
</tr>
</tbody>
</table>

For this measurement a battery 2.2 Ah @20 hr was connected with Rahimafrooz battery charge controller and the battery were started to charging with a power pack 12V and constant current 200mA. At the beginning the voltage increased. So current was feeding into the battery. And the charge controller did not regulate and all the current was feeding into the battery.

Approximately 75 minutes after the battery voltage was reached the regulation voltage set point (14.48 volts) of the battery charge controller, and the controller began to regulate the current. During regulation, the maximum battery voltage was between 14.4 and 14.5 volts. This maximum battery voltage corresponded to the voltage regulation set point for the battery charge controller. The minimum battery voltage was about 13.94 volts. The fact that the minimum voltage was consistent over the regulation period indicated that the controller was regulating the battery voltage between the voltage regulation and module reconnection set points. This voltage difference 0.54 volt is often referred to as the controller’s hysteresis. The hysteresis is an important specification for a controller and must be selected properly to achieve good module energy utilization and proper battery charging.

Then a load (CFL lamp 12V/ 0.51 A) was connected in the system to start deep discharging process. The battery voltage decreased steadily from 12.8V to 12.18V after one minute the charge controller disconnected the load. It was observed in the oscilloscope that when battery voltage was 11.9V the charge controller disconnected the load. And there was a sharp rise in the battery voltage as it approached to an open-circuit (no load) voltage of about 12.9 volts. This voltage regulation set point might not be perfect for this type of SHS, because this charge controller was made for solar home system whose discharge battery rated at 100 hours discharge rate.

The charge controller cover was removed and found the circuit diagram shown in figure 8.5. It was found that there were five variable resistances; one of them for adjustment high voltages disconnect set point and another one was adjusting for the deep discharge disconnects set point. Again it was connected the load and the battery to the system and adjusting the variable resistance for deep discharge protection with the help of oscilloscope. It was fixed the deep discharge disconnect set point in 11.5volts and load reconnection voltage set point in 12.5volts.

C. Laboratory Test Result

The simulation is the same as the actual test. The pulse shows the value that is needed to charge the battery. At different stages, the PWM duty cycle needs to be adjusted to control the battery charging. It is able to disconnect the battery at High Voltage Disconnect (HVD) and Low Voltage Disconnect (LVD).

Not Charging

When voltage is below 10.5V

Duty cycle used: 0 %

![Fig. 14. No charge wave shape](image)

Bulk Charge

40% Ah to be used. It is when voltage is between 10.6 V to 12.6V.

Duty cycle used: 90 %
The present charge controller can charge the battery but it has many restrictions.
1. There are many times when current overflow occurred.
2. It also faced burnout.
3. The PBC is not so efficient.

VIII. CONCLUSION
The emergent need for electricity has led to a countrywide propagation of solar energy based electricity generation systems that integrate battery storage through the use of Solar Home Systems (SHSs) and a large portion of the country’s population is dependent on a strenuous means of livelihood that is rickshaw (tricycle) pulling[5]. To tackle the problem, implementation of Solar Battery Charging Station (SBCS) has emerged to the rural Bangladesh as well as in urban areas to change the scenario. Thereby, software implementation of SBCS is vitally important to monitor the system and keep the batteries safe. While maintaining the batteries of the SBCS manually, there might occurs mistakes and batteries can get overcharged. But doing it using software is not only safe but also time and cost effective. Thereby our motto is to make the cost-effective software for monitoring the station from remote region even-though. With the completion of our GUI we will be able to screen multiple batteries concurrently under the same monitor and will allow for the real-time visualization of all types of readings, such as the voltage and percentage charge of each battery.

REFERENCES