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   Abstract: In this research, the natural convection heat 

transfer from the horizontal circular cylinder in a vented 

enclosure filled with nanofluid is investigated numerically. 

Governing equations settling in the vorticity-stream function 

formulation is inclusive in the numerical work, which 

transformed into fitted body coordinate system. The study 

covered the following ranges of Rayleigh number 104Ra106, 

nanofluid volume fraction 0 0.2, enclosure width 1.667 

W/D 5, and opening size 0O/W1.  The effect of Rayleigh 

number, nanofluid volume fraction, enclosure width, and 

opening size on the Nusselt number, flow patterns and 

isotherms were investigated.  The result shows that the Nusselt 

number is proportional with Rayleigh number, opening size 

and volume fraction of nanofluid and inversely proportional 

with enclosure width. The isotherms and flow patterns display 

the temperature and flow behaviors with changing studied 

variables. The thickness of thermal boundary layer decreases 

with increasing Rayleigh number for each opening size, 

enclosure width and nanofluid volume fraction. 

 

  Keywords: Natural Convection, Circular Cylinder, Vented 
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NOMENCLATURE 

code Definition Unit 

Nu 
The average Nusselt number, 

(h.D/k). 

 

di,j 

The expression of Source in 

equ. (26). 

 

h 
The coefficient of Convective 

heat transfer  

W/m2.C 

cp 
Specific heat at constant 

pressure. 

KJ/kg.C 

J Jacobian.  

Knf 

the nanofluid thermal 

conductivity . 

W/m.C 

P Coordinate control function.  

Q Coordinate control function.  

Pr Prandtl number, (/).  

Ra Rayleigh number  

g Gravitational acceleration. m/s2 

t Time. seconds 

T Temperature. C 

u Velocity in x-direction. m/s 

v Velocity in y-direction. m/s 

W Enclosure Width. cm 

W Relaxation factor.  

x 
Horizontal direction in 

physical domain. 

m 

 

 

X 

Dimensionless horizontal 

direction in physical domain. 

 

y 
Vertical direction in physical 

domain. 

m 

Y 
Dimensionless vertical 

direction in physical domain. 

 

Greek Symbols 

T 

Difference between 

environmental temperature 

&cylinder surface temp. 

    C 


  Volume fraction.  

nf Nanofluid viscosity. kg/m.s 

 Thermal expansion Coefficient.  1/C 

 
Vertical direction in 

computational domain. 

 

 
Horizontal direction in 

computational domain. 

 

 Stream Function. 1/sec. 

 Dimensionless stream function.  

 Vorticity. 1/s 

 Dimensionless vorticity.  

 Kinematic viscosity. m2/s 

 Dimensionless temperature.  

 Dependent variable.  

nf  The nanofluid effective density.  
Kg/m3 

nf  Nanofluid Thermal diffusivity.  
m2/s 

Subscript 

S Cylinder surface.  

nf Nanofluid.  

e Enclosure.  

f Fluid.  

s Solid.  

X Derivative in x-direction.  

Y Derivative in y-direction.  

 Derivative in -direction.  

D Diameter of Circular cylinder.  

 Stream function.  

T Temperature.  

 Vorticity  
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I. INTRODUCTION 

There are numerous methods are obtainable to enhance 

the heat transfer efficiency. One of them is utilizing a 

fluid substitute the classical fluids like ethylene glycol, 

water, engine oil and increases the performance of heat 

transfer called a nanofluid which can be define as a fluid 

containing particles with nanometer sized and cause an 

increases in the properties like thermal diffusivity, 

stability, thermal conductivity, the coefficient of 

convective heat transfer and viscosity. A brief show of 

the relevant literature is offered in the following section. 

Shu & Zhu [1] studied the natural convection heat 

transfer in a concentric annulus between a heated inner 

circular cylinder and a cold outer square cylinder. It is 

simulated using the differential quadrature (DQ) method. 

The vorticity stream function formulation is used as the 

governing equation, and the coordinate transformation 

technique is introduced in the DQ computation. The 

transformation coordinate from physical to computational 

domain is constituted by an analytical term, and all the 

geometrical parameters can be calculated perfectly. 

Numerical results for Ra range from 10
4
 to 10

6
 and aspect 

ratios between 1.67 and 5 are presented. It is found that 

both Ra and aspect ratio are critical to the patterns of 

thermal fields and flow. The study suggests that a critical 

aspect ratio may exist at high Rayleigh number to 

distinguish the flow and thermal patterns. 

Ali et. al. [2] investigated experimentally the natural 

convection heat transfer from horizontal square cylinder 

in a square vented enclosure. The studied variables range 

was 0.25≤O/D≤4, 10
7
≤Ra≤6.6×10

7
 and 2≤W/D≤4. The 

results showed an Extrusive increase between Nu and Ra. 

moreover, Nu proportionally increases with the vent 

opening size at low enclosure widths. Supreme 

enhancement percentage is higher than 20% for bounded 

square cylinder, as contrast with unbounded square 

cylinder. Abu-Nada & Oztab [3] analyzed numerically 

the effects of inclination angle on fluid flow and natural 

convection heat transfer in an enclosure filled with Cu-

nanofluid. Use finite volume technique to resolve the 

governing equation. Rayleigh number range between 

10
3
≤Ra≤10

5 
and the inclination angle is changed from 0 

to 120. Results presented that, the impact of concentration 

of the nanoparticles on Nu is much obvious at low 

volume fraction than at high volume fraction. Inclination 

angle considers as a control parameter for a nanofluid 

filled enclosure. At higher Rayleigh numbers, the 

percentage enhancement of heat transfer decreases by 

using nanoparticles. 

This paper deals with numerical investigation of 

natural convection heat transfer, from a horizontal 

circular cylinder, located in a vented enclosure filled with 

nanofluid. The work discusses the impact of Rayleigh 

number, nanofluid volume fraction, opening size and 

enclosure width on flow distributions, temperature 

distributions and Nusselt number. The study uses various 

range of volume fraction of nanoparticles, opening size, 

Rayleigh numbers and enclosure width. 

 

II. MATHMATICAL FORMULATION 

The governing equations for incompressible, steady, 

two dimensional, laminar flow under the Boussinesq 

approximation are the recognized Navier-stokes equation. 

Primal variables are used to write the governing equations 

and then extended to the stream function-vorticity 

formulation [4]. The properties of thermophysical are 

shown in table (1) and with a Boussinesq flow supposed 

to be constant [5]. 

Table 1.Thermophysical properties of nanoparticles and 

fluid, Hakan et.al [5] 

 

The governing equation presented as:- 
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The equation of energy  
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With Boussinesq approximations, the density is 

constant for all terms of governing equations, except for 

the bouncy force term, which density is a linear function 

of the temperature. 
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 To   1                         (5)                                                                  

  is the  thermal expansion coefficient [6].  

By used stream function-vorticity formulation, the 

number of the equations can be reduced.  

The stream function ( ) may be offered as  

x
v

y
u


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,                             (6)                                                                                  

And the vorticity as  

y

u

x

v




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
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                                     (7)                                                                               

The governing equations in term of the stream function – 

vorticity formulation become: 

Continuity Equation 
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Momentum Equation: 
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Energy Equation 
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Where:            
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The nanofluid thermal diffusivity is [7]: 
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The nanofluid effective density is: 
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sfnf   1                             (13)                                                                                                              

The nanofluid heat capacitance is: 

 spfpnfp ccc )())(1()(        (14)                                                                 

The ratio of nanofluids thermal conductivity is for 

nanoparticles with spherical shape and approximated by 

the Maxwell–Garnetts model [8] 
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The nanofluid viscosity can be considered as viscosity of 

a base fluid hold a dilute suspension of tiny rigid 

spherical particles and it is given by [9].  
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The variables are non-dimensionalized by defining the 

subsequent parameters [10]:  
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Employing these non-dimensionalized variables, the 

governing equations (8)-(10) transformed to this generic 

shape in the computational space:  

  



 








db

Jt
a 


























































 1                                                                     

(18)                                          
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t
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   is the expression of unsteady? 
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The expression of diffusion in equation (18) is: 

(9) 
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Changing the dependent variable  to get the governing 

equations as table (2) [11]. 

GRID GENERATION 

Geometric data of the Cartesian coordinates can be 

formed using algebraic methods, which is used to 

produce an initial computational grid points. The 

equations of elliptic partial differential that used are 

Poisson equations: 
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(20a)   ,Qyyxx                                (20b) 

Transforming above equations in computational space 

yields a set of two elliptical PDEs of the form [12]: 
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Where       
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 yx   ;   yyxx   ; 
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Fig  1. Transformations of the physical domains into 

computational domains using elliptic grid generations 

The coordinate control functions P and Q could be 

selected to impact the grid of structure, [13]. The method 

of Successive over Relaxation (SOR) is used to acquire 

the solutions of Poisson and Laplace equation. The 

relaxation factor is equal to 1.4. The transformation of the 

physical domains into computational domains utilizing 

elliptic grid generation is illustrated in figure (1) [10]. 

 

III. METHOD OF SOLUTION 

The hybrid difference scheme is a combination of 

central and upwind difference scheme. It makes use of the 

central difference scheme, which is second order accurate 

for small peclet numbers. It turns to upwind difference 

scheme when central difference scheme produces 

inaccurate results for high peclet numbers [14].  The 

general discretization equation becomes: 
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                                                              …. (26) 

Where aW, aE, aS, aN, aM, ap

 are coefficients of the 

discretization equation [10].  

Using the method of alternating direction (ADI), the 

resulting algebraic equation is settled in two sweeps. In 

the premier sweep, the equations are solved implicitly in 

-direction and explicitly in -direction. The implicit 

discretization equation in -direction is solved by using 

Cyclic TriDiagonal Matrix Algorithm (CTDMA) because 

of its cyclic boundary conditions. On the other sweep, the 

equations are solved implicitly in -direction and explicit 

in -direction. The implicit discretization equation in -

direction is solved by using TriDiagonal Matrix 

(19) 
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Algorithm (TDMA) [6].  The initial conditions of the flux 

between vented enclosure and heated cylinder are: 
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At the cylinder surface assume constant temperature and 

for the vorticity this equation is applied 

 2,1,2

2
ii

J



                                 (28) 

The enclosure wall is considered as adiabatic surface (no 

heat transfer)  

0                                                       (29)                                                                                     

And for vorticity this equation is applied: 
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
                             (30)                                                         

At the lower vent, temperature is supposed equal to free 

stream flow temperature and the flow assumed as uniform 

so 

 0                                                         (31)                                                                                             

The local heat transfer along the upper opening was equal 

to the local heat transfer at just point downstream of it: 
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and for the vorticity      
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…. (33)  

Employing this equation by used backward finite 

difference method for first and second derivative. The 

stream function for the enclosure is supposed as constant. 

While for the cylinder which is a solid surface is 

supposed as zero because nothing enters into it or leaves 

from it.  For calculation Nusselt number which is used in 

the determination of heat transfer coefficient entailed the 

next steps: 

fk

hD
Nu                                                  (34)                                                                                                                                     

The coefficient of heat transfer is: 
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w

TT

q
h


                              (35)       

The thermal conductivity is: 

n

q
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                                         (36)                                                                 

Nusselt number is written as: 



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(37)                                                                                                                                                           

The derivative of the non_ dimensional temperature is 

calculated utilizing the next 

form,[4]:
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                                                   …. (38) 

 = 0 at cylinder surface. 

The mass flow rate flowing in and out through lower and 

upper opening is because the density variance, and it is 

represented as:  





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m

mimi

mi x
uu
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
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2

,1,

,
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(39)                                                                       

Where:         

  sfnfmi   1,  at the lower vent and 

the upper vent. 

The numerical algorithm run by a computer program in 

(Fortran 90), that is generic for a natural convection from 

heated cylinder located in a vented enclosure. 

IV. STABILITY AND GRID INDEPENDENCY 

TEST 

A stability investigation of the numerical method is 

made for the state Ra=10
5
, W/D=1.667, O/W=0.5, 

=0.05 and Pr=0.7. Three time steps are chosen with 

value 1×10
-6

, 5×10
-6

, 5×10
-7

. The highest difference 

between Nu values with various time steps is 3%. 

A wide mesh testing procedure was carried to 

guarantee a grid independent solution. Different mesh 

combinations were used for the state of W/D=2.5, Ra=10
4 

and 10
5
, Pr=6.2. For the present simulation, three grid 

sizes of 96*25, 128*45 and 192*50 are chosen to test the 

independency of the results with the grid variation. It is 

observed that the total number of grid points is 2425, 

5805 and 9650 respectively. The present code was tested 

for grid independence by calculating the average Nusselt 

number. Numerical experiments showed that when the 

mesh size is above 96*45, the computed Nu remain the 

same. However for the rest of the calculation in this study 

choose a grid size of 128*45 for better accuracy.   

VALIDATION TEST  
The code validation is an important part for numerical 

work. A Fortran 90 control volume finite element method 

code is used in this paper. The code was validated against 
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the problem of natural convection heat transfer between a 

heated horizontal cylinder placed concentrically inside a 

square enclosure by Moukalled & Acharya [15]. To test 

the code validation, the natural convection problem for 

high temperature inner circular cylinder and a low 

temperature outer vented enclosure was tested. The 

average Nusselt number and maximum stream function 

for the test case and the work of Moukalled and Acharya 

are compared in table (3), for Pr=0.7, various values of  

W/D=1.667, 2.5 and 5 with Ra=104 and 105,  O/W=0 

and volume fraction of nanofluid =0. From table (3) it is 

clear that the present conclusions are in perfect agreement 

with those of Moukalled and Acharya. 

 

V. RESULTS AND DISCUSSION 

The numerical result are given for Ra=10
4
 10

5
 and 10

6
 

and nanoparticles volume fraction for copper (Cu) based 

nanofluids which are =0, 0.05, 0.1, 0.15, 0.2. Water is 

the base fluid which means the prandtl number equal 6.2. 

The enclosure width W/D=1.667, 2.5 and 5 and opening 

size O/W=0, 0.2, 0.5, 0.8, 1. The results obtained are 

researched under various combinations of relevant 

parameters involved in the study. 

FLOW PATTERNS AND ISOTHERMS 

At Ra=104, the maximum stream function value varies 

proportionally with volume fraction of nanofluid. Two 

identical eddies clarify on two sides of the enclosure wall. 

Eddies growth linearly below the heat source for all 

nanoparticles volume faction. The flow is uniform about 

the vertical line through the center of the circular 

cylinder. At pure fluid =0, the flow is weak, the 

maximum value of stream function max=0.3435332. 

The densely packed of the flow pattern is small. An 

increase in volume fraction of nanofluid, the maximum 

stream function value increases slightly with small value. 

At volume fraction of nanofluid =0.1, max=0.6175973. 

The densely packed of the flow pattern increase. At 

=0.2, the flow is stronger. The value of maximum 

stream function becomes max=0.8591641.  

However, for Ra=10
5
, the strength of the flow 

increases and the maximum stream function value 

enhances. Eddies shape is not uniform. The flow is 

symmetrical about the vertical line of the circular 

cylinder. The maximum stream function value change 

between max=4.981700 at =0 to max=13.456240 at 

=0.2. As it can be seen at nanoparticles volume fraction 

=0 the densely packed of the flow pattern is small. 

Maximum stream function value increases with 

increasing the volume fraction of nanofluid. At =0.05 

the maximum stream function value max=7.196921. The 

densely packed of the flow pattern is high. Four small 

eddies appear in two sides. At =0.2 the flow is stronger. 

The densely packed of flow is high. Two eddies appear 

on the sides of enclosure wall, one longitudinal and one 

small. 

At high Rayleigh number Ra=10
6
, for all volume 

fraction of nanofluid, the densely packed of the flow is 

high. The streamlines move up along the inner heat 

source. The flow is strong and two small eddies appear on 

both sides of the enclosure wall. The streamlines are 

closer to cylinder wall. The value of maximum stream 

function increases with remarkable value by increasing 

the nanoparticles volume fraction. The maximum value of 

stream function varies between max=38.470870 at =0 

and max=79.035880 at =0.2. 

 

VI. CONCLUSION 

Natural convection heat transfer from horizontal 

circular cylinder in a vented enclosure containing 

nanofluid was investigated numerically for a wide range 

of Rayleigh number with taking the effect of opening size 

and enclosure width.   

The main conclusions of this paper are: 

1.  The average Nu increase with increasing the Rayleigh 

number for each enclosure width, opening size and 

nanofluid volume fraction.  

2.  The average Nu increase with increasing opening size 

for each Rayleigh number, enclosure width and nanofluid 

volume fraction. 

3.  The average Nu decrease with increasing enclosure 

width for each Rayleigh number, opening size and 

nanofluid volume fraction. 

4.  The average Nusselt number increase with increasing 

nanofluid volume fraction for each Rayleigh number, 

opening size and enclosure width. 

5.  The strength of the flow increase with increasing the 

nanofluid volume fraction for each Rayleigh number, 

opening size and enclosure width.  

6.  The thickness of thermal boundary layer decrease with 

increasing the Rayleigh number for each opening size, 

enclosure width and nanofluid volume fraction  

7.  The maximum Nusselt number at opening size 

O/W=1, W/D=1.667, =0.2 and Ra=10
6

 for all 

parameters. 

8.  The conduction heat transfer is the dominant mode for 

low Rayleigh numbers and convection heat transfer is the 

dominant mode for high Rayleigh numbers. 
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