

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 5, Issue 5, November 2015

DOI:10.17605/OSF.IO/6MPKX Page 36

 Abstract—Answer set programming (ASP) is a new

programming language paradigm combining the declarative

aspect with non-monotonic reasoning. In this paper, we will show

an application of job shop scheduling in Answer Set

Programming. The problem is a highly combinatorial and is

generally solved by specific programs written in procedural

languages. We present an approach to solve the job shop

scheduling problem in Answer Set Programming and compare

them with the standard ones. It turns out that, although Answer

Set Programming greatly simplifies the problem statement. It is

comparable in efficiency to specialized programs.

Index Terms— answer set programming, answer set

semantic, job shop scheduling, logic programming.

I. INTRODUCTION

Many real-life problems belong to the class of

NP-complete problems [1]. Logic Programming under

answer set semantics provides a powerful language for a

logical formulation of these problems. Its nondeterministic

computation liberates the user from the tree-search

programming. Answer set programming (ASP) is a form of

declarative programming that is emerged from logic

programming with negation and reasoning formalism that is

based on the answer set semantics [2, 3]. ASP is considered in

the late 1990s as a new programming paradigm [4]. Answer

set programming languages has been used to solve many real

life application problems, among them, production

configuration [5], decision support for NASA shuttle

controllers [6], synthesis of multiprocessor systems [7],

reasoning tools in biology [8, 9], team building [10],

composition of Renaissance music [11], and many more. A

number of solvers have been proposed, such as: smodels [12,

13, 14], dlv [15], cmodels [16], assat [17, 18], and clasp [19].

In this paper, we show an application of Answer Set

Programming to real life job shop scheduling problem

occurring in a factory. The job shop scheduling problem

(JSSP) is a very important practical problem. Efficient

methods of solving it can have major effects on profitability

and product quality. However, the JSSP is considered a

member among the worst class of NP complete problems [1].

In general, the difficulty of the general JSSP makes it very

hard for conventional search based methods to find near

optima in reasonable time.

The JSSP is to schedule jobs on different machines

minimizing the total time spent to complete all jobs. Given an

n-jobs and m-machines, each job comprises a set of

operations which must each be done on a different machine

for different specified processing time, in a given

job-dependent order. Each job must be processed in an

uninterrupted fashion or a non-preemptive scheduling

environment. It is not necessarily for a job to visit all the

machines. The job can visit a subset of the existing set of

machines. Each job has a release time and a due time to

complete. The release time of a job is the arrival time for that

job. The due time is the time that the job must be completed.

Example 1: assume we have 3-jobs J1, J2 and J3 and three

machines: m1, m2, and m3. Table 1, shows the pre-specified

order of operation for each job on the machines. The pair (m,

t) specifies the processing time for a particular operation on

each machine. For example, to complete job J1, it must

completes three operations in the following order: visit

machine M1 for 7 unit of time, then machine M3 for 8 unit of

time, then machine M2 for 10 unit of time. The table also,

shows the due time and release time for each job.

Table I Job shop scheduling example 1

Jobs
Operations Release

Time

Due

Time (m, t) (m, t) (m, T)

J1 1, 7 3, 8 2, 10 2 25

J2 2, 6 1, 4 3, 12 4 30

J3 1, 8 2, 8 3, 7 0 35

A legal schedule is a schedule of job sequences on each

machine such that each job's operation order is preserved, a

machine can process at most one operation at one time, and

different operations of the same job are not simultaneously

processed on different machines. The problem is to minimize

the total time elapsed between the beginning of the first

operation and the completion of the last operation (this is

called the make span). Other measures of schedule quality

exist, but shortest make span is the simplest and most widely

used criteria.

Several methods used to solve the JSSP using B&B [22],

simulated annealing [23], tabu search [24, 25, 26] and genetic

algorithms [27, 28, 29, 30, 32], practical swarm optimization

[31]. However, up to our knowledge, there is no answer set

program implementation for the JSSP.

In this paper, we first give a brief overview of Answer Set

Programming and its semantics. We then, present the job shop

scheduling problem formally. After that, we present the

solution to the job shop scheduling problem under Answer Set

Programming. Finally, we present experimental results and

conclusion.

Job shop Scheduling under Answer Set

Programming Environment
Omar EL Khatib

Computer Science, College of Computer Science and info Technology, Taif university

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 5, Issue 5, November 2015

DOI:10.17605/OSF.IO/6MPKX Page 37

II. BRIEF OVERVIEW OF ANSWER SET

PROGRAMMING

 We briefly recall the basics about ASP. An ASP-program is

a collection of rules of the form:

a0  a1, …, am, not am+1, …, an (1)

 Where, each ai is an atom. The head of the rule is a positive

atom which is the left hand side of the clause in (1). The body

of the rule is composed of literals (a literal is an atom or its

negation, denoted by not a) which is on the right side of the

clause in (1). A rule without body is a fact. A rule without

head is a constraint. Also, the rules can be positive (m>0);

negative (n>0) or both (m>0 and n>0). The symbol not stands

for default negation, also known as negation as failure.

 If P is a ground, positive program (no negation as failure

used), a unique answer set is defined as the smallest set of

literals constructed from the atoms occurring in program P

(minimal model). The last definition can be extended to any

ground program P containing negation by considering the

reduct of P with respect to a set of atoms X obtained by the

Gelfond-Lifshitz’s operator [1]. The reduct, PX, of P relative

to X for all rules in (1) in an ASP P is the set of rules:

a0  a1, …, am

 where am+1, …, an  X. Then P
X
 is a program without the

negation not. Then X is an answer set for P if X is an answer

set for P
X
.

 Once a program is described as an ASP P, its solutions, if

any, are represented by the answer set of P. One important

difference between ASP semantics and other semantics is that

a logic program may have several answer sets or may have no

answer set at all.

 Answer Set Programming is a totally declarative language.

ASP programs are not algorithms describing how to solve the

problem; the program is just a formal description of the

problem. The solution is completely found by the solver. An

ASP solver requires grounded programs as input, and that is

why before searching the answer set or solutions, the program

is grounded by a preprocessor. Actually there are many ASP’s

solvers such as: smodels, dlv, assat, cmodels, and clasp. The

computation of answer sets is done in two phases: (i)

grounding of the logic program (P): that is eliminating

variables to obtain a propositional program ground (P). (ii)

Computation of answer sets on the propositional program

ground (P).

III. JOB SHOP SCHEDULING PROBLEM

FORMULATION

 Job shop scheduling is an optimization problem in which

jobs are assigned to resources at particular times. There are

several formulations for the JSSP, we have adopted the one

presented in [32] as follows:

 Given a set of n-jobs J={j1, j2, …, jn}, and m-machines M =

{M1, …, Mm}. Let nj be the number of operations of job j.

Denote Ojkq the operation k of job j to be processed on

machine q, Tjkq and Pjkq be the start time and processing time

of operation Oikq respectively. Denote rj and dj the release

time (earliest start time) and due time (latest ending time) of

job j. Let Sj denote the set of operation pairs (Ojkp, Ojlq) of job

j, where Ojkp must be processed before Ojlq. Let Rq be the set

of operations Ojkq to be processed on machine q. Our goal is to

schedule all jobs on m-machines, while trying to minimize the

completion time or the make span. The make span is the total

time of the schedule (that is, when all the jobs have finished

processing). Given a schedule U, the completion time for a

job j is C
U

j=max(Tjkq+Pjkq) for all k{1, …, nj}, j  J and q 

M. the makespan of a schedule S is the maximum completion

time over all jobs in schedule U: C
U

max=maxjJ (Tjkq+Pjkq),

k{1, …, nj} and q  M. The job shop scheduling problem is

represented as follows:

Minimize C
U

max, where, C
U

max = maxjJ(Tjkq + Pjkq)

Subject to:

Tjwq – Tjkq >= Pjkq, where (Ojkp, Ojwp)  Sj, k, w  {1, …,

nj}, jJ and q M. (2)

Tjwq – Tikq >= Pikq or Tikq – Tjwq >= Pjwq, (3)

where Oikq, Ojwq  Rq, i, j  J, q  M, k  {1, …, ni}

and w  {1, …, nj}.

rj <= Tjkq <= dj – Pjkq, where j  J, k  {1, …, nj}, and q 

M. (4)

 Equation (2) represents the sequence constraint; Equation

(3) represents resource constraints in a disjunctive format;

and equation (4) represents the release and deadline time

constraints.

IV. PROBLEM DESCRIPTION AND RESOLUTION

IN ASP

In this section, we describe job shop scheduling problem in

the language of gringo which is the grounder for the answer

set programming solver. Initially, all operations of each job

are in a waiting state. If an operation is selected for processing

then the operation is in the working state. Once the operation

processing is completed the operation state is in the complete

state. Similarly, initially all machines are in the empty state. If

a machine is selected for processing an operation, then the

machine is in a busy state. If the machine completes

processing the operation, then the machine will be in the

empty state again. Five conditions need to be satisfied:

N1: When a machine selects an operation for a job, the

machine must not be busy.

N2: Each operation of a job selected for processing must be

in non complete state.

N3: each operation of a job selected for processing must be

completed before the due time.

N4: Each operation of a job selected for processing must be

after the release time for that job.

N5: The operation processing order must be preserved.

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 5, Issue 5, November 2015

DOI:10.17605/OSF.IO/6MPKX Page 38

A. Constructing the data module D1 of ASP

 This module defines an instance of the JSSP. This module

consists of a list of jobs, operations and machine. The jobs

list is defined as a fact of the following form:

job(jobName, releaseTime, dueTime).

 The operations list for each job is defined as a fact of the

following form:

operation(Job, operation, processTime, machine).

 To define the order of processing of operations in each job,

the following operation dependency fact is defined:

dep(jobName, operation1, operation2)

 This facts means that 'operation1' depends on 'operation2'

in a particular job. This means 'operation2' must be

completed first then 'operation1' can be processed.

 The machines list available is defined as a fact of the

following form:

machine(machineName).

B. The job shop scheduling preparation module D2

 This module defines new predicate that will simplify and

speeding up finding the answer set models of the JSSP. In this

module we assume that the total schedule time is 'n' and it is

specified by the user. This module consists of the following

rules:

 The first group consists of determining operation

dependency. It is suffice to write the following rules:

dependent(J, O) :- dep(J, O, O1).

nonDependent(J, O) :- operation(J, O, P, M),not

dependent(O).

The first rule defines all operations that are dependent on

some other operations, i.e. operations that cannot be

processed until some operation completes its execution. The

rule defines that operation 'O' of job 'J' is dependent on some

other operation. The second rule defines the operations that

are not dependent on other operations, i.e. operations that are

at the beginning of each job. Therefore, we have two kinds of

operations; the non-dependent operations and the dependent

operations.

 The second group consists of one rule that finds the total

time to execute all operations for each job. This is done in

ASP as:

totalTimeJob(J, T) :- T = #sum { P, O:operation(J,

O, P, M) }, job(J, R, D).

This rule uses the aggregates 'sum' to sum all processing time

for all operation of a particular job J.

 The third group consists of finding the earliest and latest

possible start time of each operation in each job. The start

time is a range of possible times. Assume we have a job j with

the following operations-processing time pair: (O1, t1), …,

(Os, ts). In addition, assume that the operations are ordered in

the same order listed, i.e. O2 depends on O1, O3 depends on

O2, …, Os depends on O(s-1). Assume also that the total time of

all operations processing time for a particular job is Tj =

, which computed from totalTimeJob(J, T). This time

T is the minimum time needed to finish all operations of that

job j. Let the total schedule time specified by the user is n.

Then the earliest starting time of operation O1 is zero (since it

does not depend on any operation). The maximum possible

starting time of operation O1 is from 0 to n-Tj. The n-Tj is

because operation O1 cannot starts at n-Tj+1, since it needs a

minimum of Tj-time unit to complete. Similarly, the earliest

possible operation time for O2 may start from p1 (which is

after completing O1) to a maximum of n-Tj+p1. For operation

O3, the earliest possible start time is p1+p2 and the latest

possible start time is n-Tj+p1+p2. The following set of rules

will do that:

op(J, O, P, M, R, E) :- operation(J, O, P, M),

notDependent(J, O), totalTimeJob(J, T),

E=n-T, job(J, R, D), E<D.

op(J, O, P, M, R, D) :- operation(J, O, P, M),

notDependent(J, O), totalTimeJob(J, T),

E=n-T, job(J, R, D), E>=D.

 op(J, O, P, M, S, E) :- operation(J, O, P, M),

dep(J, O, O1), op(J, O1, P1, M1, S1, E1),

totalTimeJob(J, T), S=T1+P1, E = n-T+S,

 job(J, R, D), E<D.

 op(J, O, P, M, S, D) :- operation(J, O, P, M),

 dep(J, O, O1), op(J, O1, P1, M1, S1, E1),

totalTimeJob(J, T), S=T1+P1,E = n-T+S,

job(J, R, D), E>=D.

The rules determines the earliest and latest possible times [S,

E] to execute an operation 'O' of job 'J; with processing time

'P' on machine 'M'. The first two rules are for non-dependent

operations. The rules compare the due time for the job with

possible time range and select the earlier time. The second

two rules determine the earliest and latest possible times [S,

E] to execute dependent operations. It computes the earliest

and latest possible times for the operation from the dependent

operation and compares the times with the due time of the job.

These four rules handle the constraint N3 and N4 that are

listed in section IV.

 The final rule is used to define the possible time range for

each job; as follows:

jobTimeSteps(J, O, P, M, T) :- op(J, O, P, M, S, E),

time(M, T), T>=S, T<=E.

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 5, Issue 5, November 2015

DOI:10.17605/OSF.IO/6MPKX Page 39

Note, the rules defined in this module are all facts and it

accelerates the search for a solution significantly.

C. The job shop scheduling solver module D3

This module describes solving the job shop scheduling

problem. We are mainly interested in finding a schedule of

processing all operations of all jobs in the shortest make span.

The module D3 will contain fluent busy(M, T) – "machine

M is in a busy state at time T", fluent complete(J, O, T) –

"operation O of job name J is in a complete state at time T".

One type of action – 'select', will be used.

The transition diagram of D3 will be described by group of

axioms:

 The first group defines the executability conditions for

actions. We have one action "select(J, O, P, M, T)" which

means selecting an operation O with a processing time P of

job J to be executed on machine M at time T. The rules are as

follows:

 0 { select(J, O, P, M, T) : op(J, O, P, M, S, E),

T>=S, T<=E } 1 :- machine(M), time(M, T),

not busy(M, T), avail(M, T).

The action "select" selects one operation among the

operations available to execute on a machine. The rule is a

choice rule that is bounded by 0 and 1. This means selecting

an action at any time for a machine is arbitrary. It means

further that an action is either selected or not selected. This

rule is the generate rule that will generates all possible

schedules. The rule will execute when the machine 'M' is not

busy at time 'T' ('not busy(M, T)') and there is available jobs to

select from 'avail(M, T)'. The rules 'busy(M, T)' and 'avail(M,

T)' will be explained later. The 'not busy(M, T)' in the body of

the rule handles the N1 constraint listed in section IV.

 The second group contains causal laws describing direct

effect of actions. For example it is suffice to have the rules:

complete(J, O, T+P) :- select(J, O, P, M, T),

jobTimeSteps(J, O, P, M, T).

busy(M, T) :- select(J, O, P, M, T1),

 jobTimeSteps(J, O, P, M, T1),

time(M, T), T>T1, T<T1+P.

The first rule says that if an action "select" selects an

operation for processing in a machine; then the operation will

be in a complete state after passing the operation's processing

time. The second rule says that a machine 'M' will be busy all

the time step in which the operation is processed on the

machine from T+1 to T+P-1.

 Two auxiliary rules are needed as follows:

selectedMachine(M, T) :- select(J, O, P, M, T),

jobTimeSteps(J, O, P, M, T). .

avail(J, O, T) :- jobTimeSteps(J, O, P, M, T).

This first rule is trivial. It states that a machine is selected

when it has been selected for processing some operation of a

job at some time T. The second rule checks the availability of

operations of a job at each time T.

 The third group of rules are constraints that eliminate

unwanted answer set models, which are defined as follows:

:- select(J, O, P, M, T), complete(J, O, T),

jobTimeSteps(J, O, P, M, T).

:- select(J, O, P, M, T),

operation(J, O, P, M), time(M, T),

 job(J, R, D), T+P>D.

:- select(J, O, P, M, T),

operation(J, O, P, M),time(M, T),

 job(J, R, D), T < R.

:- select(J, O, P, M, T), dep(J, O, O1),

 not complete(J, O1, T),

jobTimeSteps(J, O, P, M, T).

:- select(J, O, P, M, T),

 jobTimeSteps(J, O, P, M, T),

op(J1, O1, P1, M, S1, E1), J!=J1,

not complete(J1, O1, T), T+P>E1, T<=S1.

The first constraint states that an operation should not be

selected if it is already in a complete state. This is constraint

N2 of section IV. The second constraint states that an

operation should not pass the due time of the job (this is

constraint N3 of section IV). The third constraint states that an

operation should not be selected for processing before its

arrival time or release time (this constraint N4 of section IV).

The fourth constraint states that an operation should not be

selected if its pre-operation is not in a complete state (i.e.

order of operations is preserved). This is constraint N5 of

section IV. The fifth constraint rejects the selection of an

operation 'O' of a job 'J' that will cause another operation 'O1'

of job 'J1' (J is different than J1) on the same machine 'M'

cannot execute in its possible time range. However, the

second and third constraints are redundant and can be

eliminated since they are handled by the 'op/6' rules.

 The fourth group consists of rules that make sure that all

operations of all jobs are completed. This can be written

as:

finish(J, O) :-

operation(J, O, P, M, S, E),

complete(J, O, T), time(M, T).

:- not finish(J, O), operation(J, O, P, M).

The first rule finds all operations of a job that are complete.

The second rule is a constraint that rejects answer set models

that includes non complete operations.

 To find the schedule of minimum make span , the following

optimization rules are added:

makespan(X) :- X =

 #max {T+P:select(J,O,P,M,T) }.

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 5, Issue 5, November 2015

DOI:10.17605/OSF.IO/6MPKX Page 40

#minimize {X: makespan(X)}.

The first rule returns the makespan for the schedule

produced. It uses the aggregate max of clingo to find the

maximum time to complete the schedule. The second rule

finds the minimum make span among all schedules produced

by the module D3.It uses the optimization statement

"minimize" of gringo to find the schedule with the minimum

make span.

To complete the definition of the transition diagram of the

domain, we need to specify what fluents do not change as the

results of actions. This is a famous Frame Problem from [34]

where the authors suggested solving it by formalizing the

Inertia Axiom which says that "things tend to stay as they are".

This is a typical default which can be easily represented in

answer set programs. In our particular case, it will have the

form:

complete(J, O, T+1) :- complete(J, O, T),

 op(J, O, P,M, S, E), time(T), T<n, T>=S.

V. EXPERIMENTAL RESULTS

Our experiments were designed to assess the performance

of each of the ASP on job shop scheduling problems. We used

the ten scheduling problems produced by Taillard with 7 jobs

and 7 machines (7x7). Each of these problems consists of

forty-nine operations to be scheduled subject to sequencing

restrictions and resource capacity constraints. The operations

are grouped into seven jobs of seven operations each.

Operations within each job must be performed in order.

Further, each job requires one of seven resources and each

resource can be used by at most one job at a time.

Table (3) shows running the answer set program on several

instances of the job shop scheduling problem. The ASP was

run on An Intel core 2 due laptop with 1.2 GHz processor and

4GB RAM is used.

TABLE II. Experimental results of ASP

Problem

Instance

CPU time

in seconds

Shortest

makespan

found by

ASP

Known

shortest

makespan

3x3 Example 1 0.094 42 42

4x4 Instance 2.29 272 272

5x5 Instance 4.96 333 333

Ft6: 6x6 0.45 55 55

7x7 instance1 47.00 590 590

7x7 instance2 36.44 558 558

7x7 instance3 54.77 605 605

7x7 instance4 59.51 671 671

Note that, the problems with large value of time steps can

have big influence on the program’s performance when

employing Answer Set programming as solution method,

since the number of answer set candidates that needs to be

checked is heavily dependent on the number of time steps. For

larger problems such as 10x10 and 20x5 the cpu time is large

(more than 10 hours).

VI. CONCLUSION

In this paper, we present an approach that uses ASP to

represent the job shop scheduling problem to produce optimal

plans. Job shop scheduling is known to be a hard problem. We

have proposed to investigate and evaluate the capabilities of

ASP to job shop scheduling problem. ASP is expressive

enough to represents the constraint of the job shop scheduling

problem. The paper also shows the expressive use of the

aggregates and optimization sentences defined in the 'clingo'

solver. Job shop scheduling problem can be a killer

application of ASP when the time step increases and solving

other job shop scheduling problems is an interesting future

work.

Although we cannot solve the general case of the job shop

scheduling problem satisfactorily at the moment, we note that

the solution methodology proposed in our program could be

very useful for further development in future work. In

conclusion, ASP as a declarative programming language has

been shown to be an elegant and highly maintainable

approach for solving the job shop scheduling problem, but we

have to admit that there is still work to do in order to obtain a

competitive and robust solver. We need to investigate other

special purpose constraints, heuristics, neighborhood

structures (e.g. neighborhoods that each neighbor of feasible

schedule is locally optimal [35]) and problem decomposition

that can speed up the algorithm. For example, we can use the

shortest processing time first (SPT) or shortest total

processing time (STPT). Further research may focus on Flow

job Shop Scheduling Problem (FJSSP) and Open Job Shop

Scheduling problem (OJSSP).

REFERENCES
[1] J. F. Muth and G. L. Thompson. Industrial Scheduling.

Prentice Hall, Englewood Cliffs, New Jersey, 1963.

[2] M. Gelfond and V. Lifschitz, The Stable Model Semantics for

Logic Programming, ICLP/SLP, pp. 1070-1080, 1988.

[3] C. Baral. "Knowledge Representation, Reasoning and

Declarative Problem Solving," Cambridge University Press,

2003.

[4] V. Marek and M. Truszczyński, "Stable models and an

alternative logic programming paradigm," In Apt, Krzysztof R.

The Logic programming paradigm: a 25-year perspective,

Springer. pp. 169-181, 1991.

[5] T. Soininen and I. Niemela, “Developing a declarative rule

language for applications in product configuration, “ In Gupta,

G., ed.: Proceedings of the First International Workshop on

Practical Aspects of Declarative Languages (PADL’99), pp.

305–319, Springer 1999.

[6] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and

M. Barry, "An A-prolog decision support system for the space

shuttle," Proceedings of the Third International Symposium on

Practical Aspects of Declarative Languages (PADL'01), pp

169-183, Springer-Verlag, 2001.

[7] H. Shebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub,

"Answer set vs integer linear programming for automatic

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 5, Issue 5, November 2015

DOI:10.17605/OSF.IO/6MPKX Page 41

synthesis of multiprocessor systems from real-time parallel

programs," Journal of Reconfigurable Computing, 2009.

[8] E. Erdem, and F. Ture, "Efficient haplotype inference with

answer set programming," Proceedings of the Twenty-third

National Conference on Artificial Intelligence (AAAI'08), pp.

436–441, 2008.

[9] M. Gebser, T. Schaub, S. Thiele, and P. Veber, "Detecting

inconsistencies in large biological networks with answer set

programming," Theory and Practice of Logic Programming 11

(2), pp1–38, 2011.

[10] G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F.

Scalise, "An ASP-based system for team-building in the

Gioia-Tauro seaport". In Proceedings of the Twelfth

International Symposium on Practical Aspects of Declarative

Languages (PADL’10), Volume 5937 of Lecture Notes in

Computer Science., Springer-Verlag, pp. 40–42, 2010.

[11] G. oenn, M. Brain, M. de Vos, and J. Fitch, "Automatic

composition of melodic and harmonic music by answer set

programming". Proceedings of the Twenty-fourth International

Conference on Logic Programming (ICLP’08). Volume 5366

of Lecture Notes in Computer Science., pp. 160–174,

Springer-Verlag 2008.

[12] P. Simons. “Efficient implementation of the stable model

semantics for normal logic programs,” Research Report 35,

Helsinki University of Technology, September 1995.

[13] P. Simons, I. Niemels, and T. Soininen, "Extending and

implementing the stable model semantics". Artificial

Intelligence 138 (1-2), pp. 181–234, 2002.

[14] I. Niemelä and P. Simons. Smodels - an implementation of the

stable model and well-founded semantics for normal logic

programs. In Proceedings of the 4th International Conference

on Logic Programming and Nonmonotonic Reasoning, volume

1265 of Lecture Notes in Artificial Intelligence, Dagstuhl,

Germany, pages 420-429, July 1997.

[15] F. Lin and Yu. Zhao, ASSAT: “Computing answer sets of a

logic program by SAT solvers,” Artificial Intelligemce

157(1-2), pp. 115-137, 2014.

[16] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,

and F. Scarcello. “The DLV system for knowledge

representation and reasoning,” ACM Transactions on

Computational Logic, 7(3):499–562, July 2006.

[17] Yu. Lierler and M. Maratea, “Cmodels-2: SAT-based answer

set solver enhanced to non-tight programs,” In Proc. of

LPNMR-7, 2004.

[18] V. Lifschitz and A. Razborov. Why are there so many loop

formulas? ACM Transactions on Computational Logic, pp

261-268, 2006.

[19] M. Gebser, B. Kaufmann, A. Neumann and T. Schaub, “clasp:

A Conflict-Driven Answer Set Solver,” LPNMR'07, 2007.

[20] M. R. Gary and D. S. Johnson, "Computers and Intractability: a

Guide to the Theory of NP Completeness," Freeman 1979.

[21] H. Shebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub,

"Answer set vs integer linear programming for automatic

synthesis of multiprocessor systems from real-time parallel

programs," Journal of Reconfigurable Computing, 2009.

[22] P. Bucker, B.Jurisch, and B. Sievers. A branch and bound

algorithm for job-shop scheduling problem. Discrete Applied

Math, vol 49, pp. 105-127, 1994.

[23] H.R. Loureco. Local Optimization and the job shop scheduling

problem. European Journal of Operational Research 83, pp.

347-364, 1995.

[24] E. Nowicki and C. Smutnicki. A Fast Tabu search Algorithm

for the Job-Shop problem. Management Science, 42(6), pp.

797-813, 1996.

[25] E. Nowicki and C. Smutnicki. An advanced Tabu search

Algorithm for the Job-Shop problem. Journal of Scheduling,

8(2), pp. 145-813, 2005.

[26] C. Y. Zhang, P. Li and Z. Guan. A very fast TS/SA algorithm

for the job-shop scheduling problem. Computers and

Operations Research, 35, pp. 282-294, 2008.

[27] S. M. K. Hasan, R. Saarker and D. Cornforth. GA with Priority

Rules for Solving Job-Shop Scheduling Problems. Proceeding

of the IEEE Congress on Evolutionary Computation, CEC

2008, June 1-6, Hong Kong, China, pp. 3804-3811, 2008.

[28] R. Qing-doa-er-ji and Y. Wang. A new hybrid genetic

algorithm for job-shop Scheduling Problem. Computers and

Operations Research, 39(10), pp. 2291-2299, 2012.

[29] D. Y. Sha and C. Hsu. A hybrid practical swarm Optimization

for job-shop schedulingptoblem. Computers and Industrial

Engineering, 51(4), pp. 791-808, 2006.

[30] L. Wang and D. Zheng. An effective hybrid optimization

strategy for job-shop scheduling problem. Computers and

Operations Research, 35, pp. 282-294, 2008.

[31] D. Y. Sha and C. Hsu. A hybrid practical swarm Optimization

for job-shop schedulingptoblem. Computers and Industrial

Engineering, 51(4), pp. 791-808, 2006.

[32] L. Wang and D. Zheng. An effective hybrid optimization

strategy for job-shop scheduling problem. Computers and

Operations Research, 35, pp. 282-294, 2008.

[33] S. Yang. An imporved Adaptive Neural Network for Job Shop

Scheduling. 2005.

[34] J. McCarthy and P. J. Hayes. Some Philosophical Problems

from the Standpoint of Artificial Intelligence. In B. Meltzer

and D. Michie, (eds.) Machine Intelligence 4, pp. 463–502,

1969 (Edinburgh, Scotland: Edinburgh University Press)

[35] P. Brucker. An efficient algorithm for the job shop problem

with two jobs", Computing 40, 353-359, 1994.

AUTHOR BIOGRAPHY
Omar EL Khatib: Currently I am an assistant professor in computer

science, college of computers and information technology, Taif University. I

Received a PhD in computer science from New Mexico State University,

NM, USA. My current research is in Answer Set Programming, and

Planning. My other interest is machine learning and image recognition.

.

