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     Abstract—Answer set programming (ASP) is a new 

programming language paradigm combining the declarative 

aspect with non-monotonic reasoning. In this paper, we will show 

an application of job shop scheduling in Answer Set 

Programming. The problem is a highly combinatorial and is 

generally solved by specific programs written in procedural 

languages. We present an approach to solve the job shop 

scheduling problem in Answer Set Programming and compare 

them with the standard ones. It turns out that, although Answer 

Set Programming greatly simplifies the problem statement. It is 

comparable in efficiency to specialized programs. 

 

Index Terms— answer set programming, answer set 

semantic, job shop scheduling, logic programming. 

I. INTRODUCTION 

Many real-life problems belong to the class of 

NP-complete problems [1]. Logic Programming under 

answer set semantics provides a powerful language for a 

logical formulation of these problems. Its nondeterministic 

computation liberates the user from the tree-search 

programming. Answer set programming (ASP) is a form of 

declarative programming that is emerged from logic 

programming with negation and reasoning formalism that is 

based on the answer set semantics [2, 3]. ASP is considered in 

the late 1990s as a new programming paradigm [4]. Answer 

set programming languages has been used to solve many real 

life application problems, among them, production 

configuration [5], decision support for NASA shuttle 

controllers [6], synthesis of multiprocessor systems [7], 

reasoning tools in biology [8, 9], team building [10], 

composition of Renaissance music [11], and many more. A 

number of solvers have been proposed, such as: smodels [12, 

13, 14], dlv [15], cmodels [16], assat [17, 18], and clasp [19]. 

In this paper, we show an application of Answer Set 

Programming to real life job shop scheduling problem 

occurring in a factory. The job shop scheduling problem 

(JSSP) is a very important practical problem. Efficient 

methods of solving it can have major effects on profitability 

and product quality. However, the JSSP is considered a 

member among the worst class of NP complete problems [1]. 

In general, the difficulty of the general JSSP makes it very 

hard for conventional search based methods to find near 

optima in reasonable time. 

The JSSP is to schedule jobs on different machines 

minimizing the total time spent to complete all jobs. Given an 

n-jobs and m-machines, each job comprises a set of 

operations which must each be done on a different machine 

for different specified processing time, in a given 

job-dependent order. Each job must be processed in an 

uninterrupted fashion or a non-preemptive scheduling 

environment. It is not necessarily for a job to visit all the 

machines. The job can visit a subset of the existing set of 

machines. Each job has a release time and a due time to 

complete. The release time of a job is the arrival time for that 

job. The due time is the time that the job must be completed. 

Example 1: assume we have 3-jobs J1, J2 and J3 and three 

machines: m1, m2, and m3. Table 1, shows the pre-specified 

order of operation for each job on the machines. The pair (m, 

t) specifies the processing time for a particular operation on 

each machine. For example, to complete job J1, it must 

completes three operations in the following order: visit 

machine M1 for 7 unit of time, then machine M3 for 8 unit of 

time, then machine M2 for 10 unit of time. The table also, 

shows the due time and release time for each job. 

Table I Job shop scheduling example 1 

Jobs 
Operations Release 

Time 

Due 

Time (m, t) (m, t) (m, T) 

J1 1, 7 3, 8 2, 10 2 25 

J2 2, 6 1, 4 3, 12 4 30 

J3 1, 8 2, 8 3, 7 0 35 
 

A legal schedule is a schedule of job sequences on each 

machine such that each job's operation order is preserved, a 

machine can process at most one operation at one time, and 

different operations of the same job are not simultaneously 

processed on different machines. The problem is to minimize 

the total time elapsed between the beginning of the first 

operation and the completion of the last operation (this is 

called the make span). Other measures of schedule quality 

exist, but shortest make span is the simplest and most widely 

used criteria.  

Several methods used to solve the JSSP using B&B [22], 

simulated annealing [23], tabu search [24, 25, 26] and genetic 

algorithms [27, 28, 29, 30, 32], practical swarm optimization 

[31]. However, up to our knowledge, there is no answer set 

program implementation for the JSSP. 

In this paper, we first give a brief overview of Answer Set 

Programming and its semantics. We then, present the job shop 

scheduling problem formally. After that, we present the 

solution to the job shop scheduling problem under Answer Set 

Programming. Finally, we present experimental results and 

conclusion.  
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II. BRIEF OVERVIEW OF ANSWER SET 

PROGRAMMING 

   We briefly recall the basics about ASP. An ASP-program is 

a collection of rules of the form: 

a0  a1, …, am, not am+1, …, an         (1) 

   Where, each ai is an atom. The head of the rule is a positive 

atom which is the left hand side of the clause in (1). The body 

of the rule is composed of literals (a literal is an atom or its 

negation, denoted by not a) which is on the right side of the 

clause in (1).  A rule without body is a fact. A rule without 

head is a constraint. Also, the rules can be positive (m>0); 

negative (n>0) or both (m>0 and n>0). The symbol not stands 

for default negation, also known as negation as failure.  

   If P is a ground, positive program (no negation as failure 

used), a unique answer set is defined as the smallest set of 

literals constructed from the atoms occurring in program P 

(minimal model). The last definition can be extended to any 

ground program P containing negation by considering the 

reduct of P with respect to a set of atoms X obtained by the 

Gelfond-Lifshitz’s operator [1]. The reduct, PX, of P relative 

to X for all rules in (1) in an ASP P is the set of rules: 

a0  a1, …, am 

   where am+1, …, an  X. Then P
X
 is a program without the 

negation not. Then X is an answer set for P if X is an answer 

set for P
X
. 

   Once a program is described as an ASP P, its solutions, if 

any, are represented by the answer set of P. One important 

difference between ASP semantics and other semantics is that 

a logic program may have several answer sets or may have no 

answer set at all.  

    Answer Set Programming is a totally declarative language. 

ASP programs are not algorithms describing how to solve the 

problem; the program is just a formal description of the 

problem. The solution is completely found by the solver. An 

ASP solver requires grounded programs as input, and that is 

why before searching the answer set or solutions, the program 

is grounded by a preprocessor. Actually there are many ASP’s 

solvers such as: smodels, dlv, assat, cmodels, and clasp. The 

computation of answer sets is done in two phases: (i) 

grounding of the logic program (P): that is eliminating 

variables to obtain a propositional program ground (P).  (ii) 

Computation of answer sets on the propositional program 

ground (P). 

III.  JOB SHOP SCHEDULING PROBLEM 

FORMULATION 

 Job shop scheduling is an optimization problem in which 

jobs are assigned to resources at particular times. There are 

several formulations for the JSSP, we have adopted the one 

presented in [32] as follows: 

   Given a set of n-jobs J={j1, j2, …, jn}, and m-machines M = 

{M1, …, Mm}. Let nj be the number of operations of job j. 

Denote Ojkq the operation k of job j to be processed on 

machine q, Tjkq and Pjkq be the start time and processing time 

of operation Oikq respectively. Denote rj and dj the release 

time (earliest start time) and due time (latest ending time) of 

job j. Let Sj denote the set of operation pairs (Ojkp, Ojlq) of job 

j, where Ojkp must be processed before Ojlq. Let Rq be the set 

of operations Ojkq to be processed on machine q. Our goal is to 

schedule all jobs on m-machines, while trying to minimize the 

completion time or the make span. The make span is the total 

time of the schedule (that is, when all the jobs have finished 

processing). Given a schedule U, the completion time for a 

job j is C
U

j=max(Tjkq+Pjkq) for all k{1, …, nj}, j  J and q  

M. the makespan of a schedule S is the maximum completion 

time over all jobs in schedule U: C
U

max=maxjJ (Tjkq+Pjkq), 

k{1, …, nj} and q  M. The job shop scheduling problem is 

represented as follows: 

Minimize C
U

max, where, C
U

max = maxjJ(Tjkq + Pjkq)  

Subject to: 

 

Tjwq – Tjkq >= Pjkq, where (Ojkp, Ojwp)  Sj, k, w  {1, …, 

nj}, jJ and q M.          (2) 

 

Tjwq – Tikq >= Pikq or Tikq – Tjwq >= Pjwq,   (3) 

where Oikq, Ojwq  Rq, i, j  J, q  M, k  {1, …, ni} 

and w  {1, …, nj}.          

 

rj <= Tjkq <= dj – Pjkq, where j  J, k  {1, …, nj}, and q  

M.                 (4) 

   Equation (2) represents the sequence constraint; Equation 

(3) represents resource constraints in a disjunctive format; 

and equation (4) represents the release and deadline time 

constraints. 

IV. PROBLEM DESCRIPTION AND RESOLUTION 

IN ASP 

In this section, we describe job shop scheduling problem in 

the language of gringo which is the grounder for the answer 

set programming solver. Initially, all operations of each job 

are in a waiting state. If an operation is selected for processing 

then the operation is in the working state. Once the operation 

processing is completed the operation state is in the complete 

state. Similarly, initially all machines are in the empty state. If 

a machine is selected for processing an operation, then the 

machine is in a busy state. If the machine completes 

processing the operation, then the machine will be in the 

empty state again. Five conditions need to be satisfied:  

 

N1: When a machine selects an operation for a job, the 

machine must not be busy. 

N2: Each operation of a job selected for processing must be 

in non complete state. 

N3: each operation of a job selected for processing must be 

completed before the due time. 

N4: Each operation of a job selected for processing must be 

after the release time for that job. 

N5: The operation processing order must be preserved. 
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A. Constructing the data module D1 of ASP 

   This module defines an instance of the JSSP. This module 

consists of a list of jobs, operations and machine. The jobs 

list is defined as a fact of the following form: 

job(jobName, releaseTime, dueTime). 

   The operations list for each job is defined as a fact of the 

following form: 

operation(Job, operation, processTime, machine). 

   To define the order of processing of operations in each job, 

the following operation dependency fact is defined: 

dep(jobName, operation1, operation2) 

   This facts means that 'operation1' depends on 'operation2' 

in a particular job. This means 'operation2' must be 

completed first then 'operation1' can be processed. 

   The machines list available is defined as a fact of the 

following form: 

machine(machineName). 

B. The job shop scheduling preparation module D2 

   This module defines new predicate that will simplify and 

speeding up finding the answer set models of the JSSP. In this 

module we assume that the total schedule time is 'n' and it is 

specified by the user. This module consists of the following 

rules: 

 The first group consists of determining operation 

dependency. It is suffice to write the following rules: 

dependent(J, O) :- dep(J, O, O1). 

nonDependent(J, O) :- operation(J, O, P, M),not 

dependent(O). 

The first rule defines all operations that are dependent on 

some other operations, i.e. operations that cannot be 

processed until some operation completes its execution. The 

rule defines that operation 'O' of job 'J' is dependent on some 

other operation. The second rule defines the operations that 

are not dependent on other operations, i.e. operations that are 

at the beginning of each job. Therefore, we have two kinds of 

operations; the non-dependent operations and the dependent 

operations.  

 The second group consists of one rule that finds the total 

time to execute all operations for each job. This is done in 

ASP as: 

totalTimeJob(J, T) :- T = #sum { P, O:operation(J, 

O, P, M) }, job(J, R, D). 

This rule uses the aggregates 'sum' to sum all processing time 

for all operation of a particular job J. 

 The third group consists of finding the earliest and latest 

possible start time of each operation in each job. The start 

time is a range of possible times. Assume we have a job j with 

the following operations-processing time pair: (O1, t1), …, 

(Os, ts). In addition, assume that the operations are ordered in 

the same order listed, i.e. O2 depends on O1, O3 depends on 

O2, …, Os depends on O(s-1). Assume also that the total time of 

all operations processing time for a particular job is Tj = 

, which computed from totalTimeJob(J, T). This time 

T is the minimum time needed to finish all operations of that 

job j. Let the total schedule time specified by the user is n. 

Then the earliest starting time of operation O1 is zero (since it 

does not depend on any operation). The maximum possible 

starting time of operation O1 is from 0 to n-Tj. The n-Tj is 

because operation O1 cannot starts at n-Tj+1, since it needs a 

minimum of Tj-time unit to complete. Similarly, the earliest 

possible operation time for O2 may start from p1 (which is 

after completing O1) to a maximum of n-Tj+p1. For operation 

O3, the earliest possible start time is p1+p2 and the latest 

possible start time is n-Tj+p1+p2. The following set of rules 

will do that: 

op(J, O, P, M, R, E) :- operation(J, O, P, M),  

notDependent(J, O), totalTimeJob(J, T), 

E=n-T, job(J, R, D), E<D. 

op(J, O, P, M, R, D) :- operation(J, O, P, M),  

notDependent(J, O), totalTimeJob(J, T), 

E=n-T, job(J, R, D), E>=D. 

   op(J, O, P, M, S, E)  :- operation(J, O, P, M),  

dep(J, O, O1), op(J, O1, P1, M1, S1, E1),  

totalTimeJob(J, T), S=T1+P1, E = n-T+S, 

 job(J, R, D), E<D. 

   op(J, O, P, M, S, D)  :- operation(J, O, P, M), 

 dep(J, O, O1), op(J, O1, P1, M1, S1, E1),  

totalTimeJob(J, T), S=T1+P1,E = n-T+S,  

job(J, R, D), E>=D. 

The rules determines the earliest and latest possible times [S, 

E] to execute an operation 'O' of job 'J; with processing time 

'P' on machine 'M'. The first two rules are for non-dependent 

operations. The rules compare the due time for the job with 

possible time range and select the earlier time. The second 

two rules determine the earliest and latest possible times [S, 

E] to execute dependent operations. It computes the earliest 

and latest possible times for the operation from the dependent 

operation and compares the times with the due time of the job. 

These four rules handle the constraint N3 and N4 that are 

listed in section IV. 

 The final rule is used to define the possible time range for 

each job; as follows: 

jobTimeSteps(J, O, P, M, T) :- op(J, O, P, M, S, E), 

time(M, T), T>=S, T<=E. 
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Note, the rules defined in this module are all facts and it 

accelerates the search for a solution significantly.  

C. The job shop scheduling solver module D3 

This module describes solving the job shop scheduling 

problem. We are mainly interested in finding a schedule of 

processing all operations of all jobs in the shortest make span.  

The module D3 will contain fluent busy(M, T) – "machine 

M is in a busy state at time T", fluent complete(J, O, T) – 

"operation O of job name J is in a complete state at time T". 

One type of action – 'select', will be used. 

The transition diagram of D3 will be described by group of 

axioms: 

 The first group defines the executability conditions for 

actions. We have one action "select(J, O, P, M, T)" which 

means selecting an operation O with a processing time P of 

job J to be executed on machine M at time T. The rules are as 

follows:  

    0 { select(J, O, P, M, T) : op(J, O, P, M, S, E),   

T>=S, T<=E } 1 :- machine(M), time(M, T),  

not busy(M, T), avail(M, T). 

The action "select" selects one operation among the 

operations available to execute on a machine. The rule is a 

choice rule that is bounded by 0 and 1. This means selecting 

an action at any time for a machine is arbitrary. It means 

further that an action is either selected or not selected. This 

rule is the generate rule that will generates all possible 

schedules. The rule will execute when the machine 'M' is not 

busy at time 'T' ('not busy(M, T)') and there is available jobs to 

select from 'avail(M, T)'. The rules 'busy(M, T)' and 'avail(M, 

T)' will be explained later. The 'not busy(M, T)' in the body of 

the rule handles the N1 constraint listed in section IV. 

 The second group contains causal laws describing direct 

effect of actions. For example it is suffice to have the rules: 

complete(J, O, T+P) :- select(J, O, P, M, T),  

jobTimeSteps(J, O, P, M, T). 

busy(M, T) :- select(J, O, P, M, T1), 

 jobTimeSteps(J, O, P, M, T1),  

time(M, T), T>T1, T<T1+P. 

The first rule says that if an action "select" selects an 

operation for processing in a machine; then the operation will 

be in a complete state after passing the operation's processing 

time. The second rule says that a machine 'M' will be busy all 

the time step in which the operation is processed on the 

machine from T+1 to T+P-1. 

 Two auxiliary rules are needed as follows: 

selectedMachine(M, T) :- select(J, O, P, M, T),  

jobTimeSteps(J, O, P, M, T). . 

avail(J, O, T) :- jobTimeSteps(J, O, P, M, T). 

This first rule is trivial. It states that a machine is selected 

when it has been selected for processing some operation of a 

job at some time T. The second rule checks the availability of 

operations of a job at each time T. 

 The third group of rules are constraints that eliminate 

unwanted answer set models, which are defined as follows: 

 

:- select(J, O, P, M, T), complete(J, O, T),  

jobTimeSteps(J, O, P, M, T). 

 

:- select(J, O, P, M, T),  

operation(J, O, P, M), time(M, T),  

 job(J, R, D), T+P>D. 

:- select(J, O, P, M, T),  

operation(J, O, P, M),time(M, T),  

 job(J, R, D), T < R. 

 

:- select(J, O, P, M, T), dep(J, O, O1), 

 not complete(J, O1, T),  

jobTimeSteps(J, O, P, M, T). 

:- select(J, O, P, M, T), 

 jobTimeSteps(J, O, P, M, T),   

op(J1, O1, P1, M, S1, E1), J!=J1,  

not complete(J1, O1, T), T+P>E1, T<=S1. 

The first constraint states that an operation should not be 

selected if it is already in a complete state. This is constraint 

N2 of section IV. The second constraint states that an 

operation should not pass the due time of the job (this is 

constraint N3 of section IV). The third constraint states that an 

operation should not be selected for processing before its 

arrival time or release time (this constraint N4 of section IV). 

The fourth constraint states that an operation should not be 

selected if its pre-operation is not in a complete state (i.e. 

order of operations is preserved). This is constraint N5 of 

section IV. The fifth constraint rejects the selection of an 

operation 'O' of a job 'J' that will cause another operation 'O1' 

of job 'J1' (J is different than J1) on the same machine 'M' 

cannot execute in its possible time range. However, the 

second and third constraints are redundant and can be 

eliminated since they are handled by the 'op/6' rules. 

 The fourth group consists of rules that make sure that all 

operations of all jobs are completed. This can be written 

as: 

finish(J, O) :-  

operation(J, O, P, M, S, E), 

complete(J, O, T), time(M, T). 

:- not finish(J, O), operation(J, O, P, M). 

The first rule finds all operations of a job that are complete. 

The second rule is a constraint that rejects answer set models 

that includes non complete operations. 

 To find the schedule of minimum make span , the following 

optimization rules are added: 

makespan(X) :- X = 

 #max {T+P:select(J,O,P,M,T) }. 
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#minimize {X: makespan(X)}. 

The first rule returns the makespan for the schedule 

produced. It uses the aggregate max of clingo to find the 

maximum time to complete the schedule. The second rule 

finds the minimum make span among all schedules produced 

by the module D3.It uses the optimization statement 

"minimize" of gringo to find the schedule with the minimum 

make span. 

To complete the definition of the transition diagram of the 

domain, we need to specify what fluents do not change as the 

results of actions. This is a famous Frame Problem from [34] 

where the authors suggested solving it by formalizing the 

Inertia Axiom which says that "things tend to stay as they are". 

This is a typical default which can be easily represented in 

answer set programs. In our particular case, it will have the 

form: 

complete(J, O, T+1) :- complete(J, O, T), 

 op(J, O, P,M, S, E), time(T), T<n, T>=S. 

V. EXPERIMENTAL RESULTS 

Our experiments were designed to assess the performance 

of each of the ASP on job shop scheduling problems. We used 

the ten scheduling problems produced by Taillard with 7 jobs 

and 7 machines (7x7). Each of these problems consists of 

forty-nine operations to be scheduled subject to sequencing 

restrictions and resource capacity constraints. The operations 

are grouped into seven jobs of seven operations each. 

Operations within each job must be performed in order. 

Further, each job requires one of seven resources and each 

resource can be used by at most one job at a time. 

Table (3) shows running the answer set program on several 

instances of the job shop scheduling problem. The ASP was 

run on An Intel core 2 due laptop with 1.2 GHz processor and 

4GB RAM is used.  

TABLE II. Experimental results of ASP 

Problem 

Instance 

CPU time 

in seconds 

Shortest 

makespan 

found by 

ASP 

Known 

shortest 

makespan 

3x3 Example 1 0.094 42 42 

4x4 Instance 2.29 272 272 

5x5 Instance 4.96 333 333 

Ft6: 6x6 0.45 55 55 

7x7 instance1 47.00 590 590 

7x7 instance2 36.44 558 558 

7x7 instance3 54.77 605 605 

7x7 instance4 59.51 671 671 

Note that, the problems with large value of time steps can 

have big influence on the program’s performance when 

employing Answer Set programming as solution method, 

since the number of answer set candidates that needs to be 

checked is heavily dependent on the number of time steps. For 

larger problems such as 10x10 and 20x5 the cpu time is large 

(more than 10 hours). 

VI. CONCLUSION 

In this paper, we present an approach that uses ASP to 

represent the job shop scheduling problem to produce optimal 

plans. Job shop scheduling is known to be a hard problem. We 

have proposed to investigate and evaluate the capabilities of 

ASP to job shop scheduling problem. ASP is expressive 

enough to represents the constraint of the job shop scheduling 

problem. The paper also shows the expressive use of the 

aggregates and optimization sentences defined in the 'clingo' 

solver. Job shop scheduling problem can be a killer 

application of ASP when the time step increases and solving 

other job shop scheduling problems is an interesting future 

work. 

Although we cannot solve the general case of the job shop 

scheduling problem satisfactorily at the moment, we note that 

the solution methodology proposed in our program could be 

very useful for further development in future work. In 

conclusion, ASP as a declarative programming language has 

been shown to be an elegant and highly maintainable 

approach for solving the job shop scheduling problem, but we 

have to admit that there is still work to do in order to obtain a 

competitive and robust solver. We need to investigate other 

special purpose constraints, heuristics, neighborhood 

structures (e.g. neighborhoods that each neighbor of feasible 

schedule is locally optimal [35]) and problem decomposition 

that can speed up the algorithm. For example, we can use the 

shortest processing time first (SPT) or shortest total 

processing time (STPT). Further research may focus on Flow 

job Shop Scheduling Problem (FJSSP) and Open Job Shop 

Scheduling problem (OJSSP). 
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