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    Abstract— The limited available spectrum and the inefficiency 

in the spectrum usage results in a new communication 

technology, referred to as cognitive radio networks. Cognitive 

radio a promising technology which provides a novel way to 

improve utilization efficiency of available electromagnetic 

spectrum. Spectrum sensing is a key function of cognitive radio 

which helps to detect the spectrum holes (underutilized bands of 

the spectrum) providing high spectral resolution capability to 

prevent the harmful interference with licensed users and identify 

the available spectrum for improving the spectrum’s utilization. 

Different spectrum sensing techniques including narrowband and 

wideband spectrum, single and cooperative spectrum sensing 

techniques are discussed. Challenges of spectrum sensing process 

is presented. Blind detector techniques and robust sensing 

algorithms are also explained and discussed in this paper. 

 
Index Terms—Spectrum Sensing, Cognitive Radio, 

Cooperative Sensing, Wideband Sensing. 

I. INTRODUCTION 

A cognitive radio is designed to be aware of and sensitive 

to the changes in its surrounding. An important and essential 

function of Cognitive Radio (CR) networks is to sense the 

spectrum holes, unutilized band of the spectrum, which 

enables CR networks to adapt to its environment. The most 

effective way to detect spectrum holes is to detect the 

existence of active licensed users, also known as primary 

users (PUs) that are receiving data within the communication 

range of Next Generation (xG) networks. Figure (1) shows 

spectrum utilization in the frequency bands between 30 MHz 

and 3 GHz averaged over six different locations [1]. The 

relatively low utilization of the licensed spectrum suggests 

that spectrum scarcity, as perceived today, is largely due to 

inefficient fixed frequency allocations rather than any 

physical shortage of spectrum. This observation has prompted 

the regulatory bodies to investigate a radically different 

access paradigm where secondary (unlicensed) systems are 

allowed to opportunistically utilize the unused primary 

(licensed) bands, commonly referred to as white spaces. The 

fundamental task of each CR user in CR networks, in the most 

primitive sense, is to detect PUs if they are present and 

identify the available spectrum if they are absent. This is 

usually achieved by sensing the RF environment, a process 

called spectrum sensing [2-5]. The objectives of spectrum 

sensing are twofold: first, CR users should not cause harmful 

interference to PUs by either switching to an available band or 

limiting its interference with PUs at an acceptable level and, 

second, CR users should efficiently identify and exploit the 

spectrum holes for required throughput and Quality of Service 

(QoS). Thus, the detection performance in spectrum sensing 

is crucial to the performance of both primary and CR 

networks [6]. The detection performance can be primarily 

determined on the basis of two metrics: probability of false 

alarm, which denotes the probability of a CR user declaring 

that a PU is present when the spectrum is actually free, and 

probability of detection, which denotes the probability of a 

CR user declaring that a PU is present when the spectrum is 

indeed occupied by the PU. Since a miss in the detection will 

cause the interference with the PU and a false alarm will 

reduce the spectral efficiency, it is usually required for 

optimal detection performance that the probability of 

detection is maximized subject to the constraint of the 

probability of false alarm. In order to protect the primary 

systems from the adverse effects of secondary users‘ 

interference, white spaces across frequency, time and space 

should be reliably identified. Table 1 lists a variety of 

approaches that may be employed for this purpose [7]. The 

first two approaches charge the primary systems with the task 

of providing secondary users with current spectrum usage 

information by either registering the relevant data (e.g., the 

primary system‘s location and power as well as expected 

duration of usage) at a centralized database or broadcasting 

this information on regional beacons [8]. While leading to 

simplified secondary transceivers, these methods require 

some modifications to the current licensed systems and, as 

such, are incompatible with legacy primary users. Moreover, 

their deployment is costly and requires positioning 

information at the secondary users in addition to either a 

ubiquitous connection to the database or a dedicated 

standardized channel to broadcast the beacons. Spectrum 

sensing, on the other hand, solely relies on the secondary 

system to identify white spaces through direct sensing of the 

licensed bands. In this case the secondary system monitors a 

licensed frequency band and opportunistically transmits when 

it does not detect any primary signal. Thanks to its relatively 

low infrastructure cost and compatibility with legacy primary 

systems, spectrum sensing has received more attention than 

other candidates and is being considered for inclusion in the 

IEEE 802.22 standard. Due to their ability to autonomously 

detect and react to changes in spectrum usage, secondary 

users equipped with spectrum sensing capability may be 

considered a primitive form of cognitive radio [9]. Indeed, 

enabling dynamic spectrum access seems to be the first and 
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foremost commercial application of cognitive radio [10]. 

 

 
Fig 1. Spectrum usage measurements averaged over six 

locations [1] 

 

II. CHALLENGES OF SPECTRUM SENSING 

PROCESS 

Several sources of uncertainty such as channel uncertainty, 

noise uncertainty, sensing interference limit etc. need to be 

addressed while solving the issue of spectrum sensing in 

cognitive radio networks. These issues are discussed in details 

as follows. 

A.  Channel uncertainty 

In wireless communication networks, uncertainties in 

received signal strength arises due to channel fading or 

shadowing which may wrongly interpret that the primary 

system is located out of the secondary user‘s interference 

range as the primary signal may be experiencing a deep fade 

or being heavily shadowed by obstacles. Therefore, cognitive 

radios have to be more sensitive to distinguish a faded or 

shadowed primary signal from a white space. Any uncertainty 

in the received power of the primary signal translates into a 

higher detection sensitivity requirement. Figure (2) shows the 

tradeoff between spectrum sensing time and user throughput. 

Under severe fading, a single cognitive radio relying on 

local sensing may be unable to achieve this increased 

sensitivity since the required sensing time may exceed the 

sensing period. This issue may be handled by having a group 

of cognitive radios (cooperative Sensing), which share their 

local measurements and collectively decide on the occupancy 

state of a licensed band. 

Table 1. Classification of white space identification methods 

[7]. 
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B. Noise uncertainty 

The detection sensitivity can be defined as the minimum 

SNR at which the primary signal can be accurately (e.g. with a 

probability of 0.99) detected by the cognitive radio and is 

given by Equation 1, 

 
 

Where N is the noise power, Pp is transmitted power of the 

primary user, D is the interference range of the secondary 

user, and R is maximum distance between primary transmitter 

and its corresponding receiver The above equation suggests 

that in order to calculate the required detection sensitivity, the 

noise power has to be known, which is not available in 

practice, and needs to be estimated by the receiver. However 

the noise power estimation is limited by calibration errors as 

well as changes in thermal noise caused by temperature 

variations. Since a cognitive radio may not satisfy the 

sensitivity requirement due to an underestimate of N, 

should be calculated with the worst case noise 

assumption, thereby necessitating a more sensitive detector 

[38].  

 
 

Fig. Tradeoff between spectrum sensing time and user 

throughput [37] 
 

C. Aggregate interference uncertainty 

In future, due to the widespread deployment of secondary 

systems, there will be increased possibility of multiple 

cognitive radio networks operating over the same licensed 

band. As a result, spectrum sensing will be affected by 

uncertainty in aggregate interference (e.g. due to the unknown 

number of secondary systems and their locations). Though, a 

primary system is out of interference range of a secondary 

system, the aggregate interference may lead to wrong 

detection. This uncertainty creates a need for more sensitive 

detector, as a secondary system may harmfully interfere with 

primary system located beyond its interference range, and 

hence it should be able to detect them. 
 

D. Sensing interference limit 

Primary goal of spectrum sensing is to detect the spectrum 

status i.e. whether it is idle or occupied, so that it can be 
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accessed by an unlicensed user. The challenge lies in the 

interference measurement at the licensed receiver caused by 

transmissions from unlicensed users. First, an unlicensed user 

may not know exactly the location of the licensed receiver 

which is required to compute interference caused due to its 

transmission. Second, if a licensed receiver is a passive 

device, the transmitter may not be aware of the receiver. So 

these factors need attention while calculating the sensing 

interference limit. 

 

III. SPECTRUM SENSING TECHNIQUES 

There are many ways of classification for spectrum sensing 

in cognitive radio. One of these classifications based on 

frequency domain approach and time domain approach. In 

frequency domain method estimation is carried out directly 

from signal so this is also known as direct method. In time 

domain approach, estimation is performed using 

autocorrelation of the signal. Another classification is by 

making group into model based parametric method and 

period gram based non-parametric method [11]. Another way 

of classification is based on the need of spectrum sensing 

[12]. 

A. Spectrum sensing for spectrum opportunities  

a)     Primary transmitter detection: In this approach, 

detection of a signal from a primary transmitter is based 

on the received signal at CR users whether it is present or 

not. It is also known as non-cooperative detection. This 

method includes matched filter based detection, energy 

based detection, cyclostationary based detection, radio 

identification based detection [13], wavelet detection and 

compressed sensing detection.  

b)    Cooperative or collaborative detection: It refers to 

spectrum sensing methods where information from 

multiple Cognitive radio users is incorporated for 

primary user detection. This approach includes either 

centralized access to the spectrum coordinated by a 

spectrum server or distributed approach. 

 

B. Spectrum sensing for interference detection  

a) Interference temperature detection: In this method the 

secondary users are allowed to transmit with lower power 

then the primary users and restricted by interference 

temperature level so that there is no interference. 

Cognitive radio works in the Ultra Wide band (UWB) 

technology.  

b) Primary receiver detection: In this method, the 

interference and/or spectrum opportunities are detected 

based on primary receiver's local oscillator leakage 

power [13]. 

 

C. Classification of spectrum sensing techniques 

From the perspective of signal detection, sensing 

techniques can be classified into two broad categories: 

coherent and non-coherent detection. In coherent detection, 

the primary signal can be coherently detected by comparing 

the received signal or the extracted signal characteristics with 

a priori knowledge of primary signals. In non-coherent 

detection, no a priori knowledge is required for detection. 

Another way to classify sensing techniques is based on the 

bandwidth of the spectrum of interest for sensing: narrowband 

and wideband. The classification of sensing techniques [6] is 

shown in Figure (3). In this article, we will discuss in a quite 

details spectrum sensing techniques related to wide band and 

narrowband signals which are the base of wireless 

communication specially, mobile communications and most 

of data transmission signals. 

 

 
Fig 3. Classification of spectrum sensing techniques 

 

IV. NARROW BAND SPECTRUM SENSING 

TECHNIQUES 

There are different techniques to achieve spectrum sensing 

within narrow bands. The most effective and practical 

techniques are energy detection, matched filter detection and 

cyclostationary feature detection. Each technique has its 

advantages and drawbacks according to the followings.  

A. Energy Detection  

Energy detection [14, 15] is a non-coherent detection 

method that detects the primary signal based on the sensed 

energy. Energy detection is a sub-optional signal detection 

technique which has been extensively used in radiometry.  

The detection process can be performed in both time 

domain and frequency domain. To measure the signal power 

in a particular frequency band in time domain, a band-pass 

filter is applied to the target signal and the power of the signal 

samples is measured. To measure the signal power in 

frequency domain, the time domain signal is transformed to 

frequency domain using FFT and the combined signal power 

over all frequency bins in the target frequency band is then 

measured [16]. Time domain energy detector consists of a low 

pass filter to reject out of band noise and adjacent signals. 

Implementation with Nyquist sampling A/D converter, 

square-law device and integrator as shown in Figure 4(a). 

Frequency domain energy detector can be implemented 

similar to a spectrum analyzer by averaging frequency bins of 

a FFT as shown in Figure 4(b). In energy detection method, 

the locations of the primary receivers are not known to the 

cognitive users because there is no signaling between the 

primary users and the cognitive users. 
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Fig 4. Implementation of Energy Detector 

Basic hypothesis model for energy detection can be defined 

as follows [17] 

                 (2)  

Where, x(t) is the signal received by the cognitive user, s(t) 

is the transmitted signal of the primary user, n(t)is the 

AWGN(Additive White Gaussian Noise) and h is the 

amplitude gain of the channel. (H0) is a null hypothesis, (H1) 

is an alternative hypothesis. 

Without loss of generality, we can consider a complex 

baseband equivalent of the energy detector. The detection is 

the test of the following two hypo-theses: 

 
Where, (N) is observation interval, the noise samples W[n] 

are assumed to be additive white Gaussian (AWGN) with zero 

mean and variance . In the absence of coherent detection, 

the signal samples X[n] can also be modeled as Gaussian 

random process with variance . The model could be always 

reduced into Equation (3). 

A decision statistic for energy detector is shown in 

Equation (4). 

 
In this architecture, to improve signal detection we have 

two degrees of freedom. The frequency resolution of the FFT 

increases with the number of points K (equivalent to changing 

the analog pre-filter), which effectively increases the sensing 

time. As the number of averages N increases, estimation of 

signal energy also increases. In practice, to meet the desire 

resolution with a moderate complexity and low latency, fixed 

size FFT is chosen. Then, the number of spectral averages 

becomes the parameter used to meet the detector performance 

goal. 

If the number of samples used in sensing is not limited, an 

energy detector can meet any desired probability of detection 

(𝑃𝑑) and probability of false alarm (𝑃𝑓𝑎) simultaneously. The 

minimum number of samples is a function of the signal to 

noise ratio 

 

 
Due to its simplicity and no requirement on a priori 

knowledge of PU signals, energy detection is the most 

popular sensing technique. However, energy detection is 

often accompanied by a number of disadvantages.  

i. The sensing time taken to achieve a given probability of 

detection may be high. 

ii. The detection performance is subject to the uncertainty 

of noise power.  

iii. Energy detection cannot be used to distinguish primary 

signals from CR user signals. As a result, CR 

users need to be tightly synchronized and 

refrained from transmissions during an interval 

called Quiet Period in cooperative sensing. 

iv. Energy detection cannot be used to detect spread 

spectrum signals. 

B. Matched Filter 

Matched-filtering is known as the optimum method for 

detection of primary users when the transmitted signal is 

known [19]. The main advantage of matched filtering is the 

short time to achieve a certain probability of false alarm or 

probability of misdetection [20]. Block diagram of matched 

filter is shown in Figure (5). 

(a) 

(b) 

Fig 5. Block diagram of matched filter. (a) Implementation 

technique based on  [21], (b) Implementation technique based on 

[23]. 

Initially the input signal passes through a band-pass filter; 

this will measure the energy around the related band, then 

output signal of BPF is convolved with the match filter whose 

impulse response is same as the reference signal. Finally the 

matched filter out value is compared to a threshold for 

detecting the existence or absence of primary user. The 

operation of matched filter detection is expressed in Equation 

(7) 

 
Where (X[k]) is the unknown signal (vector) and is 

convolved with the (h), the impulse response of matched filter 

that is matched to the reference signal for maximizing the 

SNR. Detection by using matched filter is useful only in cases 

where the information from the primary users is known to the 

cognitive users [13]. 

This technique has the advantage that it requires less 

detection time because it requires less time for higher 

processing gain. However, matched-filtering requires 

cognitive radio to demodulate received signals. Hence, it 

requires perfect knowledge of the primary users signaling 

features such as bandwidth, operating frequency, modulation 
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type and order, pulse shaping, and frame format. Moreover, 

since cognitive radio needs receivers for all signal types, the 

implementation complexity of sensing unit is impractically 

large [22]. Another disadvantage of match filtering is large 

power consumption as various receiver algorithms need to be 

executed for detection. Further this technique is feasible only 

when licensed users are cooperating. Even in the best possible 

conditions, the results of matched filter technique are bound 

by the theoretical bound [13]. 
 

C. Cyclostationary Feature Detection 

It has been introduced as a complex two dimensional signal 

processing technique for recognition of modulated signals in 

the presence of noise and interference [22]. Cyclostationary 

feature detection exploits the periodicity in the received 

primary signal to identify the presence of PUs. The 

periodicity is commonly embedded in sinusoidal carriers, 

pulse trains, spreading code, hopping sequences, or cyclic 

prefixes of the primary signals. Due to the periodicity, these 

cyclostationary signals exhibit the features of periodic 

statistics and spectral correlation, which is not found in 

stationary noise and interference. Thus, cyclostationary 

feature detection is robust to noise uncertainties and performs 

better than energy detection in low SNR regions. Although it 

requires a priori knowledge of the signal characteristics, 

cyclostationary feature detection is capable of distinguishing 

the CR transmissions from various types of PU signals. 

 This eliminates the synchronization requirement of energy 

detection in cooperative sensing. Moreover, CR users may not 

be required to keep silent during cooperative sensing and thus 

improving the overall CR throughput. This method has its 

own shortcomings owing to its high computational 

complexity and long sensing time. Due to these issues, this 

detection method is less common than energy detection in 

cooperative sensing. Block diagram of cyclostationary feature 

detection technique is shown in Figure (6).  

 

(a) 

 
(b) 

Fig 6. Cyclostationary feature detector block diagram.  (a) 

Implementation technique based on  [21], (b) Implementation 

technique based on [23]. 
 

The received signal is assumed to be of the following 

simple form 

 
The cyclic spectral density (CSD) function of a received 

signal in Equation (7) can be calculated as 

 

Where,   is the cyclic autocorrelation function 

(CAF) as in Equation (9) and α is the cyclic frequency? 

 
  

The CSD function outputs peak values when the cyclic 

frequency is equal to the fundamental frequencies of 

transmitted signal x(n).Cyclic frequencies can be assumed to 

be known [24], [25] or they can be extracted and used as 

features for identifying transmitted signals. 

Fig 7. Receiver uncertainty and multipath/shadow fading [6]. 

The main advantage of the feature detection is that it can 

discriminate the noise energy from the modulated signal 

energy. Furthermore, cyclostationary feature detection can 

detect the signals with low SNR. This technique also have 

disadvantages that the detection requires long observation 

time and higher computational complexity [26]. In addition, 

feature detection needs the prior knowledge of the primary 

users. Table (2) summarizes the advantages and drawbacks of 

narrowband sensing techniques. 

Table 2. SUMMARY OF ADVANTAGES AND 

DISADVANTAGES OF NARROWBAND SPECTRUM 

SENSING ALGORITHMS. 

 

Narrow band 

Spectrum 

sensing 

algorithm 

Advantages Disadvantages 

Energy 

Detection 

Low 

computational 

complexity. 

 

Don‘t require a 

priori knowledge 

of PU signals 

Bad performance at 

Low SNR. 

Cannot detect spread 

spectrum signals. 

Cannot differentiate 

between PUs and 

SUs. 

Matched-filter 

detection  

Optimum method 

for detection. 

Low 

computational 

cost. 

Low sensing time. 

 

Requires perfect 

knowledge of the 

primary users 

signaling features. 

Large power 

consumption 

Large 

implementation 
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complexity 

Cyclostationary 

Feature 

Detection 

Detect the signals 

with low SNR. 

Robust against 

interference 

It needs the prior 

knowledge of the 

primary users. 

long observation 

time 

Higher 

computational 

complexity 

 

 

 

V. COOPERATIVE SENSING TECHNIQUE 

In this technique cognitive radio users are cooperated. 

Many factors in practice such as multipath fading, shadowing, 

and the receiver uncertainty problem [2] may significantly 

compromise the detection performance in spectrum sensing. 

In Figure (7), multipath fading, shadowing and receiver 

uncertainty are illustrated. As shown in Figure (7), CR1 and 

CR2 are located inside the transmission range of primary 

transmitter (PU TX) while CR3 is outside the range. Due to 

multiple attenuated copies of the PU signal and the blocking 

of a house, CR2 experiences multipath and shadow fading 

such that the PU‘s signal may not be correctly detected. 

Moreover, CR3 suffers from the receiver uncertainty problem 

because it is unaware of the PU‘s transmission and the 

existence of primary receiver (PU RX). As a result, the 

transmission from CR3 may interfere with the reception at PU 

RX. However, due to spatial diversity, it is unlikely for all 

spatially distributed CR users in a CR network to concurrently 

experience the fading or receiver uncertainty problem. The 

main idea of cooperative sensing is to enhance the sensing 

performance by exploiting the spatial diversity in the 

observations of spatially located CR users. By cooperation, 

CR users can share their sensing information for making a 

combined decision more accurate than the individual 

decisions [6]. The performance improvement due to spatial 

diversity is called cooperative gain. The cooperative gain can 

be also viewed from the perspective of sensing hardware. 

Owing to multipath fading and shadowing, the signal-to-noise 

ratio (SNR) of the received primary signal can be extremely 

small and the detection of which becomes a difficult task. 

Since receiver sensitivity indicates the capability of detecting 

weak signals, the receiver will be imposed on a strict 

sensitivity requirement greatly increasing the implementation 

complexity and the associated hardware cost. The detection 

performance cannot be improved by increasing the 

sensitivity, when the SNR of PU signals is below a certain 

level known as a SNR wall [8]. Fortunately, the sensitivity 

requirement and the hardware limitation issues can be 

considerably relieved by cooperative sensing. As shown in 

Figure (8), the performance degradation due to multipath 

fading and shadowing can be overcome by cooperative 

sensing such that the receiver‘s sensitivity can be 

approximately set to the same level of nominal path loss 

without increasing the implementation cost of CR devices 

[27]. Fig 8. Improvement of sensitivity with cooperative 

sensing [27]. However, cooperative gain is not limited to 

improved detection performance and relaxed sensitivity 

requirement. For example, if the sensing time can be reduced 

due to cooperation, CR users will have more time for data 

transmission so as to improve their throughput. In this case, 

the improved throughput is also a part of cooperative gain. 

Thus, a well-designed cooperation mechanism for 

cooperative sensing can significantly contribute to a variety of 

achievable cooperative gain. Although cooperative gain can 

be achieved in cooperative sensing as previously discussed, 

the achievable cooperative gain can be limited by many 

factors. For example, when CR users blocked by the same 

obstacle are in spatially correlated shadowing, their 

observations are correlated. More spatially correlated CR 

users participating in cooperation can be detrimental to the 

detection performance [27].  

Fig 8. Improvement of sensitivity with cooperative sensing 

[27]. 

This raises the issue of user selection for cooperation in 

cooperative sensing. In addition to gain-limiting factors, 

cooperative sensing can incur cooperation overhead. The 

overhead refers to any extra sensing time, delay, energy, and 

operations devoted to cooperative sensing compared to the 

individual (non-cooperative) spectrum sensing case. 

Moreover, any performance degradation in correlated 

shadowing or the vulnerability to security attacks is also a part 

of the cooperation overhead. Thus, we are motivated to 

explore the idea of cooperation in spectrum sensing and 

provide an insight on how cooperative sensing can be 

effectively leveraged to achieve the optimal cooperative gain 

without being compromised by the incurred cooperation 

overhead. 

A. Classification of Cooperative Sensing 

Cooperative spectrum sensing can be classified into three 

categories based on how cooperating CR users share the 

sensing data in the network: centralized [28], distributed [29], 

and relay-assisted [30]. These three types of cooperative 

sensing are illustrated in Figure (9). In centralized 



                                                       
   

 

ISSN: 2277-3754   

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 5, Issue 3, September 2015 

DOI:10.17605/OSF.IO/TWUXM Page 30 
 

 

cooperative sensing, a central identity called fusion center 

(FC) controls the three-step process of cooperative sensing. 

First, the FC selects a channel or a frequency band of interest 

for sensing and instructs all cooperating CR users to 

individually perform local sensing. Second, all cooperating 

CR users report their sensing results via the control channel. 

Then the FC combines the received local sensing information, 

determines the presence of PUs, and diffuses the decision 

back to cooperating CR users. As shown in Figure 9(a), CR0 

is the FC and CR1–CR5 are cooperating CR users performing 

local sensing and reporting the results back to CR0. For local 

sensing, all CR users are tuned to the selected licensed 

channel or frequency band where a physical point-to-point 

link between the PU transmitter and each cooperating CR user 

for observing the primary signal is called a sensing channel. 

For data reporting, all CR users are tuned to a control channel 

where a physical point-to-point link between each 

cooperating CR user and the FC for sending the sensing 

results is called a reporting channel. Note that centralized 

cooperative sensing can occur in either centralized or 

distributed CR networks. In centralized CR networks, a CR 

base station (BS) is naturally the FC. Alternatively, in CR ad 

hoc networks (CRAHNs) where a CR BS is not present, any 

CR user can act as a FC to coordinate cooperative sensing and 

combine the sensing information from the cooperating 

neighbors. Unlike centralized cooperative sensing, 

distributed cooperative sensing does not rely on a FC for 

making the cooperative decision. In this case, CR users 

communicate among themselves and converge to a unified 

decision on the presence or absence of PUs by iterations. 

Figure 9(b) illustrates the cooperation in the distributed 

manner. After local sensing, CR1–CR5 share the local 

sensing results with other users within their transmission 

range. Based on a distributed algorithm, each CR user sends 

its own sensing data to other users, combines its data with the 

received sensing data, and decides whether or not the PU is 

present by using a local criterion. If the criterion is not 

satisfied, CR users send their combined results to other users 

again and repeat this process until the algorithm is converged 

and a decision is reached. In this manner, this distributed 

scheme may take several iterations to reach the unanimous 

cooperative decision. The third scheme is relay-assisted 

cooperative sensing. Since both sensing channel and report 

channel are not perfect, a CR user observing a weak sensing 

channel and a strong report channel and a CR user with a 

strong sensing channel and a weak report channel, for 

example, can cooperate with each other to improve the 

performance of cooperative sensing. In Figure (9c), CR1, 

CR4 and CR5, who observe strong PU signals, may suffer 

from a weak report channel. CR2 and CR3, who have a strong 

report channel, can serve as relays to assist in forwarding the 

sensing results from CR1, CR4, and CR5 to the FC. 

  
Fig 9. Classification of cooperative sensing: (a) 

centralized, (b) distributed, and (c) relay-assisted. 

 

In this case, the report channels from CR2 and CR to the FC 

can also be called relay channels. Note that although Figure 

(9c) shows a centralized structure, the relay-assisted 

cooperative sensing can exist in distributed scheme. In fact, 

when the sensing results need to be forwarded by multiple 

hops to reach the intended receive node, all the intermediate 

hops are relays. Thus, if both centralized and distributed 

structures are one-hop cooperative sensing, the relay-assisted 

structure can be considered as multi-hop cooperative sensing. 

In addition, the relay for cooperative sensing here serves a 

different purpose from the relays in cooperative 

communications [31], where the CR relays are used for 

forwarding the PU traffic. 

 

VI. WIDEBAND SPECTRUM SENSING 

In wideband sensing, the entire band of interest is 

processed at once to find a free channel, with either a single 

Nyquist rate Analog-to-Digital Converter (ADC) or a bank of 

sub-Nyquist rate ADCs, both followed by digital processing. 

These typically consume a lot of power and radios with 

limited power budget cannot afford it [32]. Wideband 

scanning could be performed via the following two different 

methods. 

(1) By using a filter bank formed by preset multiple 

narrowband pass filters BPFs [42].This hardware-based 

solution requires more hardware components, thus 

increasing the cost and the RF impairments harmful 

effect, and limiting the flexibility of the radio by fixing 

the number of filters. After each filter, a narrowband 

state-of-the-art technique is implemented. 

(2) By using sophisticated signal processing techniques. In 

fact, narrowband sensing techniques cannot be directly 

applied to scan a wideband since they are based on single 

binary decision for the whole spectrum. Thus, they 

cannot simultaneously identify vacant channels that lie 

within the wideband spectrum. Recently proposed 

wideband spectrum sensing can be broadly categorized 

into two types: 

(i) Nyquist wideband sensing processes digital signals 

taken at or above the Nyquist rate, for example, 

Multiband joint detection, Wavelet detection, 

Sweep-tune detection, and Filter-bank detection as 
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shown in Figure (10). 

(ii) Sub-Nyquist wideband sensing acquires signals using a 

sampling rate lower than the Nyquist rate, for example, 

Analog to information converter-based wideband 

sensing, Modulated wideband converter-based wideband 

sensing, Multi coset sampling-based wideband sensing, 

and Multi-rate sub-Nyquist sampling-based wideband 

sensing as shown in Figure (12). 

 

A. Nyquist Wideband Sensing 

A simple approach of wideband spectrum sensing is to 

directly acquire the wideband signal using a standard ADC 

and then use digital signal processing techniques to detect 

spectral opportunities. There are many algorithms are 

proposed to achieve wideband spectrum sensing as discussed 

below. 

1.  Multi-band Joint Detection Algorithm 

It can sense the primary signal over multiple frequency 

bands. As shown in Figure 10(a), the wideband signal x(t) was 

firstly sampled by a high sampling rate ADC, after which a 

serial to parallel conversion circuit (S/P) was used to divide 

sampled data into parallel data streams. Fast Fourier 

transform (FFT) was used to convert the wideband signals to 

the frequency domain. The wideband spectrum X(f) was then 

divided into a series of narrowband spectra X1(f), · · · ,Xv(f). 

Finally, spectral opportunities were detected using binary 

hypotheses tests, where H0 denotes the absence of PUs and H1 

denotes the presence of PUs. The optimal detection threshold 

was jointly chosen by using optimization techniques. Such an 

algorithm can achieve better performance than the single band 

sensing case [43]. 

2.  Wavelet Transform-Based Algorithm  

In this method, the SU transceiver scans a wideband 

without using a bank of narrow BPFs. Alternatively, a 

wideband receiver will be based on high-speed digital signal 

processing to search over multiple frequency bands in an 

adaptive manner. The obtained digital signal will be modeled 

as a train of consecutive narrow frequency bands as illustrated 

in Figure (11). To identify these bands and search for 

potential spectrum holes, the wavelet transform will be used 

to locate edges between different narrow sub bands [43]. The 

corresponding block diagram is depicted in Figure 10 (b). 

Wavelet transform is used in mathematics to locate 

irregularities [44]. Consequently, it will be a good candidate 

to differentiate between the narrow sub-bands of wideband 

signal [45].A wavelet edge detector is able to identify the 

average power level within each identified sub-band which 

will lead to the localization of the spectrum holes. Figure 10. 

Block diagrams for Nyquist wideband sensing algorithms: (a) 

Multiband joint detection, (b) Wavelet detection, (c) 

Sweep-tune detection, and (d) Filter-bank detection [43]. The 

analysis using wavelet transform is based on a function known 

as the principal wavelet 𝜓 which has a finite energy. Wavelets 

are used to transform a given signal into another 

representation that models the information related to the 

signal in a more utile way. Wavelets could be manipulated in 

two different ways: moved along the frequency axis or 

stretched with a variable energy. A Wavelet transform, 

obtained by summing the product of the signal multiplied by 

the wavelet, is calculated at different spots of the signal and 

for different combinations of the wavelet. This calculation 

could be monitored to detect the irregularities of the signal by 

observing the different values of the wavelet transform. 

 
Fig 11. A wideband spectrum seen as a train of narrowband 

signals and presenting frequency irregularities. 
 

3. Sweep-Tune Detection Algorithm 

It could relax the high sampling rate requirement using 

super heterodyne (frequency mixing) techniques that ―sweep‖ 

across the frequency range of interest as shown in Figure 

10(c). A local oscillator (LO) produces a sine wave that mixes 

with the wideband signal and down-converts it to a lower 

frequency. The down-converted signal is then filtered by a 

bandpass filter (BPF), after which existing narrowband 

spectrum sensing techniques can be applied. This sweep-tune 

approach can be realized by using either a tunable BPF or a 

tunable LO. However, this approach is often slow and 

inflexible due to the sweep-tune operation. 

 

4.  Filter Bank Algorithm 

A bank of prototype filters (with different shifted central 

frequencies) was used to process the wideband signal as 
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shown in Figure 10(d). The base-band can be directly 

estimated by using a prototype filter, and other bands can be 

obtained through modulating the prototype filter. In each 

band, the corresponding portion of the spectrum for the 

wideband signal was down-converted to base-band and then 

low-pass filtered. This algorithm can therefore capture the 

dynamic nature of wideband spectrum by using low sampling 

rates. Unfortunately, due to the parallel structure of the filter 

bank, the implementation of this algorithm requires a large 

number of RF components [43].Table (3) summarizes various 

Nyquist wideband sensing algorithms. 
 

B. Sub-Nyquist Wideband Sensing 

Due to the drawbacks of high sampling rate or high 

implementation complexity in Nyquist systems, sub-Nyquist 

approaches are drawing more and more attention in both 

academia and industry. Sub-Nyquist wideband sensing refers 

to the procedure of acquiring wideband signals using 

sampling rates lower than the Nyquist rate and detecting 

spectral opportunities using these partial measurements. Two 

important types of sub-Nyquist wideband sensing are 

compressive sensing-based wideband sensing and 

multi-channel sub-Nyquist wideband sensing [43]. 

Table. 3 Comparison between Nyquist wideband sensing 

algorithms 

 

Algorithm 

Multi-ba

nd Joint 

Detectio

n 

Wavelet 

Transfor

m-Based 

Sweep-T

une 

Detectio

n 

Filter 

Bank 
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Good 
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Edge 

detection 

using 

wavelet 

Simple 

structure 

low 

sampling 

rate, 

high 

dynamic 

range 

low 

sampli

ng rate, 

high 

dynam

ic 

range 
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Optimiza

tion 

techniqu

es for 

detection 

threshold 

High 

sampling 

rate & 

Energy 

cost  

High 

impleme

ntation 

complexi

ty 

High 

sampling 

rate & 

Energy 

cost  

Bad 

performa

nce at 

low SNR 

 

Long 

sensing 

time. 

High 

impleme

ntation 

complexi

ty. 

High 

imple

mentat

ion 

comple

xity. 

 

1.  Compressive Sensing Algorithm 

  Compressive Sensing, Compressed Sampling or 

Compressed Sensing (CS) is a method in which signals are 

acquired through a set of a few non-adaptive, means the 

measurement process does not depend on the signal being 

measured, linear measurements and reconstructed efficiently 

from this incomplete set of measurements [32]. It is a recently 

emerging approach for wideband sensing [35], which samples 

the signal at the information rate rather than at the Nyquist 

rate. CS requires knowledge of the sparsity level (ratio of the 

number of busy channels to the total number of channels). 

Usually, detection with CS is preceded by a coarse or a fine 

spectrum estimation. Estimating the spectrum using CS 

generally requires ℓ1-norm optimization and is usually 

carried out using high-complexity recursive algorithms (e.g., 

the interior point linear program solver of [36]). let X be a 

sparse (that has a very few non-zero coefficients)  vector of 

length N, we are going to reconstruct X using an M<<N 

measurement by solving  the underdetermined linear system 

Y=AX. Y belongs to R
Mx1

 and is called the measurement 

vector and A∈ )MxN( is the CS matrix or the reconstruction 

matrix. In other words, we are  sensing a length N samples 

signal by only using M (which is very small comparing to N) 

measurements. The reconstruction algorithm does solving the 

underdetermined linear system  described above. Basically, 

the challenge of the CS theory includes two main problems. 

First, the proper design of the CS matrix that establishes the 

underdetermined linear system and second, choosing the right 

reconstruction algorithm so as to solve that system. Figure 12. 

Block diagrams for sub-Nyquist wideband sensing 

algorithms: (a) Analog-to-information converter-based 

wideband sensing, (b) Modulated wideband converter-based 

wideband sensing, (c) Multi-coset sampling-based wideband 

sensing, and (d) Multi-rate sub-Nyquist sampling-based 

wideband sensing [43]. Figure (13) shows the basic CS 

framework, it demonstrates the general stages that the sparse 

vector will go through. It shows the technique in general, how 

and why it can be  applied to different acquisition systems. 

Compressed Sensing is a rapidly growing field that has 

attracted researchers and developers in many fields and 

applications, such as in general coding and information 

theory, high dimensional geometry, statistical signal 

processing, machine learning, compressive imaging, medical 

imaging, analog to information conversion, radars, digital 

communication, and computer engineering. In Digital 

Communication, researchers have been and have tried 

applying this technique to many general and specific 

applications such as sparse channel estimation, equalization, 

sparse multipath channel modeling, UWB-based compressed 

sensing, cognitive radios, OFDM, sparse codes of 

multi-antenna systems [39]. 

Some papers presented CS as an alternative to Nyquist 

sampling theorem; they claim that, if we have an analog signal 

which its spectrum contains a very high center frequency with 

small bandwidth, and we want to sample using the 

conventional Nyquist theorem, we don‘t have to use the 

regular ADC which cannot support a very high oscillators, 

and if they could, they consume high power. Instead they are 

proposing that compressed sensing techniques can perform 

these tasks with a much lower sampling rate and with less 

power consumption. 
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Fig 12. 

 

 
Fig 13. CS framework. 

 

2 Multi-Channel Sub-Nyquist Spectrum Sensing Algorithm 

There are many algorithms are proposed to achieve 

multi-channel sub-Nyquist technique in wideband spectrum 

sensing each has its advantages and drawbacks as follow. 

    A modulated wideband converter (MWC) model has 

multiple sampling channels, with the accumulator in each 

channel replaced by a general low-pass filter. One 

significant benefit of introducing parallel channel 

structure in Figure 12(b) is that it provides robustness 

against the noise and model mismatches. In addition, the 

dimension of the measurement matrix is reduced, making 

the spectral reconstruction more computationally 

efficient. 

    Multi-coset sampling-based wideband sensing which is 

equivalent to choose some samples from a uniform grid, 

which can be obtained using a sampling rate (fs) higher 

than the Nyquist rate. The uniform grid is then divided 

into blocks of m consecutive samples, and in each block v 

(v < m) samples are retained while the rest of samples are 

skipped [43]. Thus, the multi-coset sampling is often 

implemented by using v sampling channels with 

sampling rate ( ), with different sampling channels 

having different time offsets. The block diagram of 

multi-coset algorithm is shown in Figure (12). To obtain 

a unique solution for the wideband spectrum from these 

partial measurements, the sampling pattern should be 

carefully designed [43]. The advantage of multi-coset 

approach is that the sampling rate in each channel is m 

times lower than the Nyquist rate. Moreover, the number 

of measurements is only v-m th of that in the Nyquist 

sampling case. One drawback of the multi-coset 

approach is that the channel synchronization should be 

met such that accurate time offsets between sampling 

channels are required to satisfy a specific sampling 

pattern for a robust spectral reconstruction [43]. 

    Asynchronous multi-rate wideband sensing approach 

which is designed to relax synchronization problem in 

multi-coset algorithm. In this approach, sub-Nyquist 

sampling was induced in each sampling channel to wrap 

the sparse spectrum occupancy map onto itself; the 

sampling rate can therefore be significantly reduced. By 

using different sampling rates in different sampling 

channels as shown in Figure 12(d), the performance of 

wideband spectrum sensing can be improved. 

Specifically, in the same observation time, the numbers 

of samples in multiple sampling channels are chosen as 

different consecutive prime numbers. Furthermore, as 

only the magnitudes of sub- Nyquist spectra are of 

interest, such a multi-rate wideband sensing approach 

does not require perfect synchronization between 

multiple sampling channels, leading to easier 

implementation. Table (4) presents advantages, 

disadvantages and challenges of sub-nyquist spectrum 

sensing techniques [43]. 
 

C. Challenges in Wideband Spectrum Sensing  

In order to find a free channel quickly, the secondary radios 

should be able to process the entire band of interest all at 

once, which a paradigm needs shift from conventional 

narrowband sensing engines to wideband architectures. Then, 

challenges of wideband sensing can be analyzed in the 

following steps. 
 

1. Latency and Complexity 

   In order to minimize the latency, the radios should adopt 

wideband architectures to search over multiple frequency 

channels all at once. It is also necessary for the secondary 

radios to be aware of the PU retransmission. Hence, sensing 

has to be repeated at certain intervals, which also demands for 

low-complexity techniques, which in turn will result in power 

saving. Realizing low-complexity wideband sensing 

techniques that can be afforded by sensor nodes is a 

challenging task. 

2.  Reliable Detection 

Even though spectrum sharing radios allow secondary 

spectrum usage and co-existence with other technologies, 

protection of the PU from the harmful interference and 

minimizing degradation of the PU‘s performance due to this 

secondary radio link, always has the top priority. The 

interference to the PU due to the secondary radio link is often 

measured in terms of miss-detection probability (to detect a 

channel as free, when the channel is actually busy). The 

receiver that performs sensing could be affected due to 

multipath, fading and shadowing in the channel, or the PU 

could be hidden to the sensing receiver [33]. These effects 
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limit the detection performance and interfere with the PU. In 

addition to this, the receiver sensitivity plays a key role for a 

reliable detection. This becomes important especially while 

detecting nodes with lower transmit power. Receiver 

sensitivity decreases with an increase in the receiver 

bandwidth, as the receiver noise increases with the bandwidth  

(N0 = −174 + 10 logB + NF, where N0 is the receiver noise 

power in dB, NF is the Noise Figure and B is the bandwidth in 

Hz). Achieving good receiver sensitivity with wideband 

architectures is relatively difficult. 

 

3. Wideband RF Front-End 

Designing a low-complexity wideband RF front-end is a 

challenging task and different approaches have been proposed 

in the literature. Multiple narrowband Band-Pass Filters 

(BFPs) could be employed to realize a filter bank, followed by 

a decision device to perform wideband sensing [34], but this 

architecture would require a large number of bulky 

components and the filter bandwidth of the BPFs (usually 

determined by the bank of capacitors) is preset. An alternative 

approach is to use a wideband Nyquist rate ADC, followed by 

digital processing. In order to achieve better sensitivity, the 

ADCs should have a higher dynamic range, which means a 

larger number of bits. Thus, wideband sensing requires 

high-rate and high resolution ADCs, which typically consume 

a lot of power. In case of sparse signals, the sampling rate can 

be relaxed and the acquisition can be done at a sub-Nyquist 

rate (significantly lower than the Nyquist rate). Later 

optimization algorithms can be used to recovery the signal 

without forgoing perfect reconstruction in the noiseless case. 

This is often referred to as a CS problem. However, current 

techniques demand signal recovery before detection. 

 

VII. BLIND DETECTORS 

Blind detectors were recently proposed to elude the model 

uncertainty problem relying on advanced digital signal 

processing techniques. In a cognitive receiver, RF 

impairments could harm the performance of the spectrum 

sensing algorithm by inducing unwanted frequency 

components in the collected signal spectrum. To mitigate the 

effects of such impairments, ―Dirty RF‖ is applied on the SU 

receiver inducing a post processing of the signal, thus 

compensating analog imperfections [46]. A robust detector, 

based on smart digital signal processing, should be able to 

digitally lower the effects of RF impairments and guarantee a 

high sensing accuracy. The selection of signal processing 

algorithms and their parameters reflects the speed and sensing 

time of the cognitive receiver. A complex signal processing 

algorithm should respect an optimum sensing value 

depending on the capabilities of the radio and its temporal 

characteristics in the environment. On the other hand, the 

ADC is considered as the primary bottleneck of the DSP 

architecture since it forces the clock speed of the system. 

Moreover, the selection of the digital signal processing 

platform affects the speed of the front end. All these 

parameters influence the sensing frequency and speed of 

cognitive radio receivers. For that, researchers focus on 

implementing sensing algorithms with low complexity, high 

speed, and flexibility in order to conceive an adaptive CR 

terminal. As per regulation specifications, secondary users are 

required to detect very weak licensed users in order to protect 

primary transmissions. Any missed detection will enable an 

unlicensed transmission on a busy channel harming the 

incumbent primary signal. Unfortunately, many detectors 

reveal performance degradation at low SNR due to 

inappropriate estimation of the signal or noise models. This 

phenomenon is known as SNR wall. For the ED, an estimation 

of the noise variance is required to select a suitable threshold. 

Imperfect knowledge of the noise model, especially in low 

SNR scenarios, will consequently deteriorate the efficiency of 

this algorithm. The SNR wall phenomenon also harms any 

detector based on the received signal‘s moments. Using 

cooperative spectrum sensing techniques or relying on 

calibration and compensation algorithms are possible 

solutions to the model uncertainty problem [47]. However, 

using totally blind detectors, which detect the presence of a 

signal without any knowledge of signal or noise parameters, is 

considered the ideal alternative. Two recently proposed blind 

detectors are described below. 
 

Algorithm Compressive 

Sensing 

Multi-Channel 

Sub-Nyquist 

Sampling 

 

Advantages 

low sampling rate, 

signal acquisition 

cost 

low sampling rate,  

robust to model 

mismatch 

 

Disadvantage

s 

Sensitive to design 

imperfections 

Require multiple 

sampling channels 

Challenges improve robustness 

to 

design 

imperfections 

Relax synchronization 

requirement 

 

Table. 4 Comparison between Sub-Nyquist wideband sensing 

algorithms [43]. 
 

A. Blind Eigen value-Based Detector 

Zeng et al. devised a blind detector based on the 

computation of the minimum and maximum eigenvalues 𝜆min 

and 𝜆max of the sample covariance matrix R(𝑁𝑆) defined in 

[48]. The test statistics of this maximum-minimum eigenvalue 

(MME) detection is simply given by 

                                                      (11) 

Where,  is the threshold calculated by using the number 

of acquired samples, the smoothing factor used for the 

calculation of R(𝑁𝑆), and a selected probability of false 

alarm. It is expected that noise produces small eigenvalues, 

whereas the correlation inherited in modulated signals 

increases the eigenvalues. The proposed test statistic does not 

depend on any knowledge of noise, signal, or channel models; 

thus it is not sensitive to the model uncertainty problem. The 
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detailed computational steps of this scheme are described in 

Algorithm 1. 
 

B. The Cyclic Autocorrelation Function (CAF) 

Symmetry-Based Detector 

This blind spectrum sensing detector is based on the 

symmetry property of the cyclic autocorrelation function 

(CAF). Benefiting from the sparsity property of CAF, the 

compressed sensing tool is adopted in this algorithm. A test 

statistic is defined, without the computation of any threshold, 

by checking if the estimated CAF exhibits symmetry or not. 

As demonstrated in [49], a positive symmetry check affirms 

the presence of a primary signal. The estimation of the cyclic 

autocorrelation vector is computed using an iterative 

optimization technique, called the Orthogonal Matching 

Pursuit (OMP) [50]. The computational complexity of this 

algorithm is reduced by limiting the number of acquired 

samples and the number of needed iterations to ensure its 

practical feasibility. Algorithm 2 summarizes the main steps 

of this detector. 

 

VIII. CONCLUSION 

This paper presented a review of spectrum sensing 

techniques with different classifications and performed the 

comparison in terms of operation, accuracies, complexities 

and implementations. Narrowband and wideband spectrum 

sensing techniques are discussed with appropriate details that 

enable researchers to choose a suitable sensing technique to 

study and develop. Cooperative spectrum sensing types and 

classifications are explained with examples. Challenges of 

spectrum sensing are generally discussed and those of 

wideband spectrum sensing are specifically concentrated. 

Blind detectors with their characteristics and algorithms are 

discussed. 

 
Algorithm (1) Steps of MME blind detectors 

 
Algorithm (2) Steps of the CAF symmetry-based detector. 
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