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 Abstract- This paper is concerned with steady state 

thermoelastic problem in which we need to determine the 

temperature distribution, displacement function and thermal 

stresses of a semi-infinite rectangular beam when the boundary 

conditions are known. Integral transform techniques are used to 

obtain the solution of the problem.  
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I. INTRODUCTION 
Khobragade et al. [2-7, 9] have investigated 

temperature distribution, displacement function, and 

stresses of a thin rectangular plate and Khobragade et al. 

[8] have established displacement function, temperature 

distribution and stresses of a semi-infinite rectangular 

beam.  

In this paper, an attempt has been made to determine the 

temperature distribution, displacement function and thermal 

stresses of a semi-infinite square beam occupying the 

region D: -a  x  a ; 0  y  b, 0  z  ∞.  with known 

boundary conditions. Here Marchi-Fasulo transforms and 

Fourier cosine transform techniques have been used to find 

the solution of the problem. 

 

II. STATEMENT OF THE PROBLEM 
Consider a thin rectangular plate occupying the space D: 

-a  x  a ; 0  y  b, 0  z  ∞.  The displacement 

components ux , uy and  uz in the x and y and z directions  

respectively as Noda et al.  [1] are                                

dxT
x

v
zyE

u

a

a

x 












































 


2

2

2

2

2

21                      (1)                            

dyT
y

v
xzE

u

b

y 












































0

2

2

2

2

2

21


  (2)                                             

   

dzT
z

v
yxE

uz 













































0

2

2

2

2

2

21


     (3)                                     

where E, ν, and  λ  are the young’s modulus, Poisson’s 

ratio and the linear coefficient of the thermal expansion of 

the material of the beam respectively and 


 (x,y,z) is the 

Airy’s stress functions which satisfy the differential 

equation as Noda et al.  [1] is                                             
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where T(x,y,z) denotes the temperature of a rectangular 

beam satisfy the following differential equation as Noda et 

al.  [1] is                                
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where k is the thermal conductivity of the material,  

subject to the boundary conditions  
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Fig 1: Geometry of the problem 

The stress components in terms of   (x, y, z) Noda et al.  

[1] are given by  
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Equations (1) to (14) constitute the mathematical 

formulation of the problem under consideration. 

 

III. SOLUTION OF THE PROBLEM 

Applying finite Marchi-Fasulo transform, finite Fourier 

cosine transform and Fourier sine transform to the 

equations,  we get   
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This is a linear differential equation whose solution is given 

by 
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where )(yF  is the P.I.  
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Substituting the values of A and B in equation (16) one 

obtains 
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Applying inverse Fourier sine transform and inverse 

Marchi-Fasulo transform to the equation (19) we get, 
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Equation (20) is the required solution. 

 

IV. AIRY’S STRESS FUNCTIONS 

Substituting the value of temperature distribution T(x,y,z) 

from (19) in equation  (18) one obtains  
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V. DISPLACEMENT COMPONENTS 

Substituting the values of Airy’s stress function   from 

equation (21) in the equation (1) to (3), one obtains 
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VI. DETERMINATION OF STRESS FUNCTION 

Substituting the value of Airy’s stress function   (x,y,z) 

from equation (22) in the equation  (23) to (24) one obtain 

the stress functions as,
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VII. SPECIAL CASE 
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Applying Marchi-Fasulo transform to the equation (4.7.1) 

we get 
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Substituting equation (4.7.2) in equations (4.3.6), (4.4.1), 

(4.5.1)- (4.5.3), (4.6.1)-(4.6.3) we obtain 
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VIII. NUMERICAL RESULTS 

Set ,86.0,2  ka ,3b in the equation (30) to 

obtain 
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IX. MATERIAL PROPERTIES 

The numerical calculations has been carried out for an 

Aluminum (pure) rectangular beam with the material 
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properties as, 

Density ρ =169 lb/ft
 3
 

Specific heat = 0.208 Btu/lbOF 

Thermal conductivity K = 117
  
Btu/(hr. ftOF) 

Thermal diffusivity α = 3.33  ft
2
/hr. 

Poisson ratio ν = 0.35 

Coefficient of linear thermal expansion αt  = 12.84 x 10
-

6
1/F 

Lame constant µ = 26.67 

Young’s modulus of elasticity E = 70G Pa  

 

X.  DIMENSIONS 

The constants associated with the numerical calculation are 

taken as  

Length of rectangular beam x = 4ft 

Breath of rectangular beam y = 3 ft 

Height of rectangular beam z = 10
3
ft                                                                                                                                            

XI. CONCLUSION 

In this paper, the temperature distribution, displacement 

function and thermal stresses at any point of a semi-infinite 

rectangular beam have been obtained, when the boundary 

conditions are known with the aid of finite Marchi-Fasulo 

transform and finite Fourier cosine transform and Fourier 

sine transform techniques. The results are obtain in the 

form of infinite series in terms of Bessel’s function.  
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