Microcontroller based Attendance Management System

Rashmi S. Moharil¹ Dr. Shankar N. Dandare²

¹ M.E. (Student) Digital Electronics, Babasaheb Naik College of Engineering, Pusad.445215 (M.S.) India.
² Professor, Department of Electronics & Telecommunication Engg. Babasaheb Naik College of Engineering, Pusad. 445215 (M.S.) India.

Abstract: Many employees are reporting late on duty and therefore, Attendance Management is a tedious task and a difficult job for a person to maintain the record of it. It is also important that if we calculate the loss of work due to late reporting it will be a huge amount if a number of employees are more. Therefore Attendance Monitoring System (AMS) helps us to control labor costs, minimize compliance risk, and improve workforce productivity. It is also reduces the administrative time associated with attendance exceptions and employee inquiries. It is possible to maintain the record of overtime of employee and record of holidays also. In view of this, Attendance Management System is proposed using Radio Frequency Identification (RFID) tag and fingerprint reader. The system takes attendance electronically with the help of the RFID and fingerprint print device, and the recorded attendance is stored in a database. The algorithm and programs are develop using python for the Raspberry Pi 2 Model B. Status of attendance can be observed on Graphical User Interface (GUI). GSM/GPRS module is implemented to send the messages to the parent’s mobile periodically.

Keywords: RFID Tag and Reader, Fingerprint Module, Raspberry pi 2 Model B & GSM.

I. INTRODUCTION

The Raspberry Pi is a series of credit card–sized single-board computers developed in the United Kingdom by the Raspberry Pi Foundation with the intent to promote the teaching of basic computers. It also plays high definition video. This device does not include a built-in hard disk or solid-state drive, but uses an SD card for booting and long-term storage.

The prototype described in this paper has the provision of accepting inputs from a smart card reader (EM-18 RFID reader) or fingerprint module (R305). Data from RFID reader and fingerprint module (R305) are serially transmitted to Raspberry Pi Model. On identification of particular student, his attendance record is updated in the database and he/she is notified on the monitor. Also a GSM module is used here to send the attendance details as a message to the parent’s phone. The literature survey related to Attendance Management System (AMS) is as under. The attendance management system is designed for student but it can also be implemented for employee.

II. RELATED WORK

Authors Tabassam Nawaz, SaimPervaiz, ArashKorran, Azhar-Ud-Dinin(2009),suggested Fingerprint sensor was used to mark the attendance, on identification student’s finger record was updated in the database and it was notified through LCD screen [1]. PallaviVerma & Namit Gupta in October 2013 suggested that, a Fingerprint acquisition module was used for capturing the fingerprint, GSM modem was used to send the attendance of the students to their parents in the form of SMS [2]. KarthikVignesh E, Shanmuganathan S, A.Sumithra, S.Kishore and P. Karthikeyan in 2013 proposed that, a Fingerprint acquisition module was used for capturing the fingerprint, The presence of each students will be updated in a database of Raspberry pi and the data will be passed to the server using Wi-Fi and GSM modem send the attendance of the students to their parents in the form of SMS [3]. Chirag M. Shah, Vanil B. Sangoi & Raj M. Visharia A in October 2014 suggested that, RFID reader or a biometric sensor was used to accept the input, access was granted to the user and the logs were wirelessly transmitted to the computer using a Wi-Fi module[4]. Ravishankar Yadav, Sumita Nainanin February 2014, proposed the system to monitor student’s attendance by using RFID module, Notification will be sent to parents in the form of SMS using GSM modem [5].

Moht Myint Thein, Chaw Myat Nwe and HlaMyoTun in JULY 2015 suggested, RFID &Finger Print Reader was used to records of the attendance and it was stored in a database. Graphical User Interface was used to show the status of the student [7]. S.Divya in January 2016, suggested attendance management system for students using a fingerprint sensor and Raspberry pi. GSM/GPRSModule was used to send the attendance details as a message to the parent’s phone [8].

III. SYSTEM DESIGN

The block diagram of proposed Microcontroller based Attendance Management System (AMS) is illustrated in Fig.1. The student’s bio-data (Name, date, time, RFID card id no. and finger id no.) are enrolled firstly in the database of raspberry pi. When a student enters into the class, this RFID reader reads his / her student’s id no. and
his/her finger must be press on the fingerprint module. Name, date, time of reading is shown on the computer screen. When RFID and fingerprint reader reads RFID card id no. and finger print id and if it matches with the list of ids available in the database then the person’s id, GSM module is used here to send the attendance details as a message to the parent’s mobile phone.

The AMS consists of Raspberry Pi2, Model B, EM-18 RFID Reader, Fingerprint Module R305, GSM SIM-900, and Display System. The details of each module are explained in the subsequent sections.

![Fig.1: Attendance Management System](image1)

EM-18 RFID Reader
Fingerprint Module R305
Raspberry Pi2, Model B
GSM SIM-900
Display

A. Raspberry Pi2, Model B

Technical Specifications:
- Broadcom BCM2836 Arm7 Quad Core Processor powered Single Board Computer running at 900MHz
- 1GB RAM
- 40pin extended GPIO
- 4 x USB 2 ports
- 4 pole Stereo output and Composite video port
- Full size High-Definition Multimedia Interface (HDMI)
- Camera Serial Interface (CSI) camera port for connecting the Raspberry Pi camera
- Display Serial Interface (DSI) display port for connecting the Raspberry Pi touch screen display
- Micro Secure Digital (SD) port for loading your operating system and storing data. It facilitates the increase of available memory via the insertion of a Micro SD card.
- Micro USB power source.

Raspberry Pi hardware has evolved through several versions that feature variations in memory capacity and peripheral-device support.

![Fig.2: Block diagram of Raspberry Pi2, Model B](image2)

This block diagram Raspberry Pi2, Model B depicts the Ethernet and USB hub components. The Ethernet adapter is connected to an additional USB port as shown in Fig.2.

Raspberry Pi 2 model B was released in February 2015. The Raspberry Pi 2 Fig. 3. http://www.cnx-software.com/wpcontent/uploads/2015/02/Raspberry_Pi_2_Model_B.jpg delivers 6 times the processing capacity of previous models.

The Raspberry Pi is a Linux based operating system environment with python as the main programming language.

![Fig.3: Raspberry Pi 2, Model B](image3)

B. EM-18 RFID Reader Modules

This is a low frequency (125 KHz) RFID reader with serial output with a range of 8-12cm as shown in Fig.4.[10]. It is a compact unit with built in antenna and can be directly connected to the PC using RS232 protocol.

![Fig.4: EM-18 RFID Reader Modules](image4)
Operating Voltage: 5v
Current: <50mA
Read distance: 10cm
Operating frequency: 125 kHz

C. RFID Tags
RFID Tag is an IC chip that has unique hexadecimal or electronic product code (EPC) contained in it. The sequence is a numeric serial, which is stored in the RFID memory. The microchip is available inside RFID tag which is shown in below fig.5 [5]. The microchip includes minute circuitry and an embedded silicon chip. Each tag can store a maximum of 2KB of information in the microchips. The tag memory can be permanent or rewritable, which can be re-programmed electronically by the reader multiple times.

The proposed system has been explained with the help of following steps.
Step 1 Initialize RFID Reader
Step 2 Initialize Monitor (computer screen)
Step 3 Initialize UART (Universal Asynchronous Receiver/Transmitter)
Step 4 Scan RFID tags
Step 5 Send scanned of RFID data to Raspberry pi model
Step 6 Using Raspberry pi model perform the filtering operation to remove unwanted field and extract student’s id
Step 7 Search student tags id in permanent database with scanned RFID student’s tags.
Step 7.1 Search student’s id, if found go to step 8 else go to step 4.
Step 8 Compare detected student’s tag, id’s, date and time with class time table and if match found then go to step 9 else go to step 4.
Step 9 Check person type and mark the presence.
Step 10 Repeat step 4 to step 9 for all row of RFID data.

D. Fingerprint Module R305
The fingerprint module as shown in Fig.7 [http://www.8051projects.info/attachments/r305-jpg.766/] is used to scan the finger and then it converts it to image and then a character file. There are 256 storage memory spaces in the module. The data that is stored in the module is then given to the controller to be read and recognized/matched in the database.

Fig.7: R305 module
A fingerprint sensor device along with a monitor is placed at the entrance of each classroom. The fingerprint sensor is used to capture the fingerprints of students while monitor notifies the student that his/her attendance has been marked. The Flow chart of the system [1] is as shown in Fig.8.

Fig.6: Directional flow of the system
The proposed system has been explained with the help of following steps.

- Step 1: Capture the student’s fingerprint sample and create a feature set. A set of unique features created to match fingerprint is called feature set.
- Step 2: Retrieve the stored templates from the repository (database).
- Step 3: Perform a one-to-n comparison between the fingerprint feature set and the fingerprint templates stored in database, make a decision of match or non-match.
- Step 4: If match is found retrieve student’s information (Registration number, Department, Subjects) from the database.
- Step 5: Obtain the scheduled lecture from the database and mark attendance if student is within the specified time i.e. within 30 minutes of the lecture’s starting time. If verification is not done or there is some error in enrollment of fingerprint, system goes back to its initial state without marking the attendance as shown in Fig.8.

E. GSM Module SIM-900A

GSM Module SIM-900A is as shown in fig.9. [D:\all datasheets\sim900a\SIM900A_GSM_modem.jpg]. It has a variable baud rate with range from 9600 to 115200. Baud rate can be configurable using AT commands. It operates on 12V regulated power supply. It has a SIM card slot to insert SIM and a receiving antenna to receive network signals. GSM Modem-RS232 is built with Dual Band GSM engine- SIM900A, works on frequencies 900/1800 MHz.

For AT commands:
- Use capital letters for AT commands.
- Send CR (Carriage return) and LF (Line feed) after the AT command.
- Place the serial communication jumpers in the right position.
- Use an external power supply and place the power jumpers in the right position.

IV. RESULT

The Microcontroller base attendance system is designed developed and tested using EM-18 RFID and R305 Finger Print Module. The GUI design and the result are shown in fig.10 to 14.

Fig.10: Microcontroller base attendance system Model

The following dialog box in Fig.11 shows the admin/teacher mode for entering in this system. Admin/Teacher needs to create own username and password to log in this system.

Fig.11: Login Screen for admin and teacher

Admin may register to every student with RFID card ID and finger ID. At this position, the user needs to press finger on fingerprint module. These registered ID number save in database shown in fig.12
For attendance, student RFID card ID firstly read from RFID reader. According to their RFID card ID that have stored in database, system will show student details. Then student must press his/her finger on fingerprint reader. If these RFID card ID and finger ID are valid, student will get roll call for that day as shown in Fig.13.

This system takes the attendance of the student and sends this attendance to their parent’s mobile through GSM. Fig.14. shows the SMS received by the parents.

This system can be extended to more number of students and more number of classes provided its database is generated. The system not only to maintain the attendance but also it can inform the status of attendance to concern by messages. The AMS is also capable of to maintain the records of loss of work due to late reporting. The AMS helps to control labor costs, minimize compliance risk, and improve workforce productivity. It can be concluded from the above discussion that a reliable, secure, fast and an efficient system has been proposed by replacing a manual and unreliable system by using Raspberry Pi Model with Radio Frequency Identification (RFID) or a fingerprint.GSM module is used here to send the attendance details as a message to the person’s phone. The benefit of this system is that it will save time and reduce the amount of work of the administration.

In future the work can be extended with the Web camera that can automatically calculate and maintain the attendance for students in an institution using an image processing.

ACKNOWLEDGMENT

I would like to thank our respected principal Dr. H. B. Nanvala and Dr. N.P. Jawarkar (Head of Electronics and Telecommunication Dept.) of Babasaheb Naik College of Engineering, Pusad, for giving us facilities and providing a congenial environment for working in the college.

I would also like to thank my project guide Dr. S.N. Dandare for encouraging and helping me with the research related to the project.

I would like to thank my family members for their patience during the completion of this work.

I would also like college staff members, friends and those who directly and indirectly assisted me in completion of this paper.

REFERENCES

[9] Datasheet of Raspberry Pi 2, Model B
[10] Datasheet of EM-18 RFID Reader
[12] Datasheet of SIM900A

Author Profile

Dr. Shankar N. Dandare:

Currently working as a professor in Electronics Engineering Department, Babasaheb Naik College of Engineering, and Pusad, India. He has completed his doctorate in Electronics Engineering. He is a member of many professional bodies like ISTE, AMIE and IETE. He has total teaching Experience 31 years at UG level and 07 years at PG level. He has published more than 23 research papers at national and international journals and conferences. He is also a reviewer of many international journals. His field of interest is signal processing and artificial neural networks.

Rashmi S. Moharil: