
                                                       
   

 

ISSN: 2277-3754   

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 4, Issue 9, March 2015 

136 

 

 

Abstract— A simple robust method for calculating dispersion 

curves of surface modes in layered media containing an 

inhomogeneous metamaterial is presented. The metal properties 

employed in the metamaterial are defined by published 

experimentally determined optical constants. The numerical 

procedure is based on solving the Helmholtz’s equation. The 

approach is demonstrated on examples that are of the current 

technological interest. These include metamaterial/air and 

metamaterial/semiconductor structures. The main outcomes of 

this paper, i. e. the surface plasmon characteristics, may provide 

wide avenues for creating plasmon devices for integrated 

optoelectronic applications. 

 

Index Terms— surface mode, inhomogeneous metamaterial, 

wave equation, permittivity profile.  

I. INTRODUCTION 

Metamaterials are engineered composites tailored for 

specific electromagnetic properties that are not found in 

nature and not observed in the constituent materials. They are 

constructed by periodic arrays of small metal and/or dielectric 

particles. As such, they are considered artificial 

electromagnetic materials and are usually designed for sub 

wavelength levels. The electromagnetic resonators or 

“particles” such as split-ring resonators and nanowires are the 

structural units of the metamaterials [1]. It is interesting to 

note that the evidence for a composite medium – interlaced 

lattices of conducting rings and wires – presenting negative 

permittivity and permeability has been suggested by Smith 

and co-workers [2, 3].  

Due to the fact that the progress in the study of 

metamaterials is impressive, it is worthwhile to investigate a 

material with permittivity and permeability varying in space. 

We refer to such materials as inhomogeneous metamaterials. 

There have been some proposals in designing inhomogeneous 

metamaterials for cloaking by means of spectral 

representation [4, 5] as well as studying the electromagnetic 

field distributions in the designed imperfect cloaks.   

It is worthwhile mentioning that the negative refractive 

index metamaterials (NRM) with spatially varying effective 

permittivity and permeability within the NRM structure and 

with a gradual transition from the positive refractive index 

metamaterials (PRM) to NRM and vice versa are of special 

interest. A graded refractive index deserves attention in the 

field of transformation optics including hyper lenses [6] and 

invisibility cloaks [7]. The investigation of gradient refractive 

index (GRIN) metamaterials opens wide avenues for 

applications, including beam shaping and directing, 

enhancement of nonlinear effects [8],  super lenses [9] etc. 

In this paper, we consider properties of surface waves 

existing at a boundary between a semiconductor and a 

metamaterial. Graded index optical structures have already 

been studied in the framework of metamaterial gradient index 

lenses by a few authors [9, 10]. They have shown that such a 

structure reduces geometrical aberrations; a gradient index 

metamaterial lens was also validated experimentally in [11]. 

These works addressed the propagation problems through 

graded index structures approximately with geometrical 

optics while dealing with a one-layer structure. We suggest to 

investigate a more complex problem, i.e. introducing a second 

layer such as a semiconductor. 

Here we present a numerical solution of the Helmholtz’s 

equation for the propagation of electromagnetic waves 

through an inhomogeneous metamaterial as well as through a 

semiconductor. We choose a profile of the metamaterial for 

which the permittivity varies according to a sinusoidal 

function. Section 2 briefly reviews the field equations 

describing magnetic fields in inhomogeneous and 

homogeneous media. In section 3, we present magnetic field 

distributions of the surface wave propagating at a boundary 

separating the mentioned two layers.  

II. MATHEMATICAL BACKGROUND 

Using Maxwell’s equations for nonmagnetic medium free 

of charges, one can derive a second order differential equation 

for a TM mode of the electromagnetic field in inhomogeneous 

and homogeneous media. Introducing a plane wave in the 

form: 
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Where ω =2πf with f being the frequency, β – is the 

longitudinal propagation constant, z – is direction of the wave 

propagation, x – is direction transversal to the direction of the 

wave propagation. 

Combining Maxwell’s equations, a differential equation for 

the inhomogeneous part of the structure is obtained as: 
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Where 
 ,f x 

 is spatially-varying 

frequency-dependent dielectric permittivity. In the 

homogeneous part of the structure Eq. (2) reduces to the 

standard wave equation: 
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III. NUMERICAL SOLUTIONS  

We consider an inhomogeneous medium shown in figure 1 

for which the effective permittivity varies as: 

 

   xfεεε eff cos0
    (4) 

 

where
    cpeff iffffεfε   /2

, ε∞ is the material’s 

background permittivity, fp and fc are plasma and collision 

frequencies, respectively. The physical structure of the 

described metamaterial may consist of a two-dimensional 

array of single split rings deposited onto a dielectric substrate, 

as implemented in [12]. It is interesting to note that a 

widely-used Drude model [10] in the field of metamaterials 

for gold has   ε∞ = 1, fp = 2175 THz, and fc=10.725 THz, with 

fc being three times larger than the normal value for the bulk 

metal shown in [13]. Alternatively, an improved Drude model 

for gold [14] fits Johnson-Christy data better. Thus we have 

found, that ε∞ = 9.6,  fp = 2184 THz, and fc=17 THz. The 

improved model agrees with Johnson-Christy data perfectly 

up to the certain frequency [14]. 

 

Fig. 1. Schematic of metamaterial/semiconductor interface in 

terms of permittivity function 

IV. NUMERICAL RESULTS AND DISCUSSION 

In this section we present numerical results first for a real ε, 

and then for a complex ε. To demonstrate the performance of 

our calculation method, we present two examples of 

structures:  

1) Inhomogeneous metamaterial/air 

2) Inhomogeneous metamaterial/semiconductor.  

The dispersion curves (frequency, f, versus propagation 

constant, β) of the surface plasmon calculated by solving the 

wave equation numerically are shown in figures 2 and 4 for 

real and complex permittivity’s, respectively. 

The plasma frequency of the semiconductor is lower than 

that of the metamaterial, i. e. fps < fpm. Consider an n-doped 

silicon sample as the second layer of the 

semiconductor/metamaterial compound with a carrier 

concentration of Nb = 9·10
19

 cm
-3

. With an average effective 

mass m* for electrons being 0.26m0, and m0 being the 

free-electron mass, and ε∞ = 11.68, this leads to fps = 4.8·10
13

 

Hz.  

In figure 2 the calculated dispersion is shown for a real ε for 

two different cases, the metamaterial/semiconductor and the 

metamaterial/air structures. It may be noted that in the 

metamaterial/air case one can observe an increase of the 

frequency band within which the surface wave exists.  

One can observe two different branches that correspond to 

the investigated structures. It is interesting to note, that the 

presented curves correspond to the usual surface-plasmon 

branches or to the branch I in the nomenclature of [15]. For 

frequencies below the plasma frequency corresponding to 

each case, the typical bound surface-plasmon mode is 

observed, approaching the light line for short wave-vectors. 

 
Fig. 2. Dispersion for real ε 

To demonstrate the behavior of the fields, figure 3 shows 

magnetic field amplitudes versus the distance into the 

structure, x, for both discussed cases, i.e. the air/metamaterial 

and the semiconductor/metamaterial structures. In all cases 

for large enough x one expects a decay following an 

exponential function. While in the homogeneous media the 

decay follows an exponential function, in the inhomogeneous 

part one obtains a numerical solution of the wave equation 

very close to the exponential function. The most of the field is 

contained on the metamaterial side.  

 
Fig. 3. Magnetic field amplitudes normalized to the surface 

values versus depth below the surface for real ε 

Air 

Semiconductor Metamaterial 
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Fig. 4. Dispersion for complex ε 

 

Figure 4 shows the dispersion of figure 2 after the 

introduction of what seems physically reasonable damping. 

Below f = 4.7·10
14

 Hz the surface-plasmon mode is observed 

for the silicon/metamaterial case and below f = 6.6·10
14

 Hz 

for the air/metamaterial compound. It approaches the light 

line at short wave-vectors, but terminating at a finite 

wave-vector on resonance. Above f = 7·10
14

 Hz the radiative 

mode is observed for both investigated cases. The radiative 

surface plasmons are coupled with propagating 

electromagnetic waves; however, for perfectly flat surfaces, 

surface plasma is always nonradioactive.  

Aside from the differences, all of the curves show the same 

qualitative behavior. At the frequency range between 

surface-plasmon and radiative surface-plasmon modes the 

quasibound modes appear to exist. It is interesting to notice 

that in the case of a silicon/metamaterial structure, this 

frequency range is wider. The presented modes can be 

described by the real mathematical components and therefore 

are not a priori forbidden. It is of particular interest to study 

negative phase velocities in naturally existing materials with 

the help of quasibound modes. On the other hand, the 

transition regimes between surface-plasmon/quasibound 

modes and quasibound/radiative surface-plasmon modes are 

marked by the infinite group velocity, that is, at first glance, a 

confusing feature. In normal dispersive media, the group 

velocity is defined by a linear relation. However, in regions of 

anomalous dispersion this linearization is not valid, and one 

should modify the propagation velocity of the wave packet to 

account for amplitude damping and the wave profile 

deformation [16].  

It should also be noted that the plasma frequency is affected 

by replacing air with silicon. The usage of semiconductors for 

low-frequency surface-plasmon propagation can be explained 

by the possibility to tune the carrier density and thus the 

plasma frequency by thermal excitation, photo carrier 

generation, or direct carrier injection. Comparing figures 3 

and 5 clearly indicates damping effects on the magnetic field 

distribution. 

 

 
Fig. 5. Magnetic field amplitudes normalized to the surface 

values versus depth below the surface for complex ε 

V. CONCLUSIONS 

In summary, we have presented a simple and robust method 

for the calculation of the dispersion curves of surface modes 

in two-layered structures containing a metamaterial and 

possessing one inhomogeneous layer. Due to our algorithm 

enabling the exact numerical solution of the Helmholtz’s 

equations, no a priori knowledge about the dispersion is 

necessary. Furthermore, the method is assumed to be valid for 

a broad range of possible structures. This has been 

demonstrated on two examples which are of current interest in 

the device technology. The dispersion curves were found to 

exhibit three distinct branches corresponding to surface 

plasmons, radiative surface plasmons, and a feature which is 

termed as quasibound modes. The application examples of the 

obtained results are considered as the future enhancement of 

the present study. 
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