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    ABSTRACT- The equations of fluid motion are obtained in 

compact form using four dimensional coordinate system.  

Boundary layer equations for the flow of an incompressible 

second-order fluid past a body of revolution have been derived 

.Boundary layer equations for the axially symmetrical flow 

past a sphere have been transformed to those for a two-

dimensional flow past a cylinder. The effect of second-order 

parameters which also depend on shape of the body has been 

determined on the location of ring of separation. The ring of 

separation shifts towards the stagnation point for the second-

order fluid as compared to Newtonian fluid. 
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I. INTRODUCTION 

The general three-dimensional case of a boundary layer 

in which the three velocity components depend on all 

three co-ordinates encounters enormous mathematical 

difficulties. On the other hand, the mathematical 

difficulties encountered in the study of axially 

symmetrical boundary layer and two-dimensional 

boundary layers are considerably smaller. 

The two-dimensional boundary layer which exists on a 

cylindrical body when it is placed in a stream whose 

direction is perpendicular to its axis depends only on the 

potential flow around the cylinder. The shape of the 

cross-section of the cylinder does not involve explicitly in 

the equations. On the other hand, in axial flow past a 

body of revolution, the boundary layer depends directly 

on the shape of the body in addition to its dependence on 

the potential flow. Mangler’s transformations [1] reduce 

the calculations of laminar boundary layer flow of a 

viscous fluid for an axially symmetrical body to that on a 

cylindrical body, In this paper, boundary layer equations   

have been derived for axially symmetrical flow of an 

incompressible second-order fluid past a body of 

revolution from general equations of motion valid for any 

three-dimensional flow of the fluid. We have applied 

Mangler’s transformations    to examine whether the 

boundary layer equations for the axially symmetrical flow 

of an incompressible second-order fluid past a sphere 

reduce to those for a two-dimensional flow of the fluid 

past a circular cylinder.   

It is found that the Mangler’s transformations do not 

hold completely for an incompressible second-order fluid. 

The shape of the body enters the equations through 

second-order parameters. We have solved the problem on 

the lines of the solution obtained in   for the two-

dimensional flow of an incompressible second-order past  

a circular cylinder. The locations of the rings of 

separations of the boundary layer on the surface of the 

sphere have been obtained for different values of the 

second-order parameters. 

 

II. GENERAL    EQUATIONS   OF   MOTION 

Consider four dimensional space where( )   

are the curvilinear coordinates with    and    ( 

)    are the corresponding velocity 

components with  where  c , usually  taken as 

velocity of light, is constant .Then,  the equation of 

continuity and the equations of motion  for a  general  

unsteady flow of a  compressible   fluid  are : 

   and                   (2.1)                                                                        

Or, in tensor notation, are:  

  

            

Respectively.  The tensor   is defined as 

    ,   =0       (2.3)                                                                              

The stress tensor   for an incompressible second-

order fluid [3] is  given as 

 . (2.4)                                                   

 The coefficients   are   material constants, p   is 

indeterminate pressure and the tensors  

    are given as 

            and        

           (2.5)                            
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Where, are the acceleration 

components? In the equations (2.4) and (2.5)     the 

indices take the values 1, 2, 3  only. For all practical 

problems, the coordinate systems used are orthogonal.  

Thus, for   an orthogonal   curvilinear coordinate system, 

let the metric tensor be diag. .  

Then, the equation of continuity is : 

   =0      (2.6)          

and the equations of motions are : 

=0        ( 2.7                              

 Where    are the physical 

components of their corresponding tensor components?  

The physical components     

                                                                         

III. BOUNDARY   LAYER   NEAR   A   BODY     

OF    REVOLUTION 
Consider the   flow of an incompressible second-order 

fluid past a body of revolution, when the stream is 

parallel to its axis.  Assuming  an orthogonal system of 

curvilinear  coordinates, let    the coordinate 

of a point  P  on  a meridian along  the increasing tangent  

to the meridian ; let   be the second  coordinate 

of P  along the principal  normal to the meridian at P in 

the negative direction.  The third coordinate   is 

along the binormal to the meridian at P.  Since the flow is 

axially symmetric, all the quantities are independent of  

  i.e.   

Let (    be the velocity field corresponding to 

the coordinate system   and  let  U( )   be the 

velocity of the potential flow. For the assumed coordinate 

system, we have  

   , which is 

the radius of  a section  cut at right angle to the axis  of 

revolution and is independent of . Assuming      

and     equal to , and applying   boundary   

layer   approximations to  the equation of continuity   

(2.6)  and to the equations  of motion (2.7) through  (2.8) 

, we obtain the boundary layer equations as : 

                (3.1)                                                                                               

 

  

        

               (3.2)      

                                                           

                            (3.3) 

 The boundary conditions of the problem are: 

   

                  (3.4) 

                The term on the left of (3.3)  is of order  

o( , where   is the boundary layer thickness, so that 

we can assume 

        =       (3.5)                                                                                   

where     is the pressure at the outer edge of the 

boundary layer .  For the outer flow, we get 

                   (3.6)                                                                                       

For a steady flow, the pressure distribution within the 

boundary layer region is given by 

   (3.7)                                                                          
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    We observe that the pressure in the boundary layer 

varies  for an incompressible second-order fluid whereas 

it is constant for a Newtonian fluid.  In the region of 

accelerated flow,  decreases from its maximum value C  

at the forward  stagnation point to a minimum at the end 

of  this region, and then increases in the region of 

decelerated  flow .In the region of accelerated flow, the 

pressure difference, due to the term   

,is less for a second-order fluid as compared to the 

Newtonian fluid , and therefore, the kinetic energy 

produced for a second-order fluid is less for a second-

order fluid. In both fluids, the friction in the boundary 

layer  is the same, hence the  consumption of kinetic 

energy is the same for both the fluids. Thus, a particle of 

a second-order fluid, moving with less kinetic energy in 

the immediate vicinity of the surface is forced to move 

back by the increasing pressure in the decelerated region 

earlier than a similar particle of a Newtonian fluid. 

Therefore, the separation for a second-order fluid occurs 

earlier than that for a Newtonian fluid. The solution of the 

problem corroborates this. 

     Using   (3.6), the boundary layer equation (3.2) 

becomes 

       

  

   

        (3.8)                                 

     We observe that the boundary layer equations of 

continuity  (3.1) and motion (3.8) for the axially 

symmetric flow of an incompressible  second-order fluid 

past a body of revolution  depend on  the shape of the 

body through  )   and   on both of the material 

coefficients    and   . But, for the corresponding 

two - dimensional flow past a cylinder, the equations are 

independent of the shape of the cylinder and as well of  

. We examine whether there is a relationship between 

the two flows. 

IV. RELATIONSHIP BETWEEN AXIALLY 

SYMMETRIC AND TWO- DIMENSIONAL   

BOUNDARY  LAYERS 

A transformation due to [1]  referred by [4]  permits 

the use of solutions of the two-dimensional flow of a 

viscous (Newtonian) fluid past a cylinder to derive 

solutions of axially  symmetric flow past a body of 

revolution. 

The two-dimensional steady flow of an incompressible 

second-order fluid past a circular cylinder has been 

discussed   where the effect of second-order 

parameters on the point of separation of the   boundary 

layer has been examined. The method used gives a good 

approximation to the exact solution in the case of a 

viscous fluid. 

We use the above mentioned transformations to 

examine if the solutions obtained for the two-dimensional 

case in   may be used to derive solutions for the 

present axially symmetric flow. The transformations are 

as below:  

 

 

  =          (4.1)                                                                                                                                                   

Then,   we have  

            ,       

. 

With these transformations, the equation of continuity 

changes to 

                                        (4.2)                                                                                                   

And the boundary layer equation   (3.7) transforms to 

    

=
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 (  2                                   

(4.3)                                                                                                                            

The boundary conditions    (3.4)    become 

       =   0   ,     

             (4.4)                     

   We observe that that the transformed equation of 

continuity (4.2) is the same as that for a two-dimensional 

flow. But ,  the equation (4.3), although  holds for a two-

dimensional flow  when     and      are zero , yet in 

the case of an incompressible second-order fluid, the 

equation (4.3) is  different  as it contains    explicitly 

in addition to  terms with       and      .  On the other 

hand,       enters the equation (4.3 ) only as a 

multiple of the second-order parameters. 

V. FLOW   PAST   A   SPHERE 

To examine the effect of second-parameters on the ring 

of separation of the boundary layer, we   take the body of 

revolution as a sphere. We consider the steady flow of an 

incompressible second-order past a sphere of radius R 

when the sphere is at rest and the free stream has velocity 

 The ideal potential velocity distribution   is 

given by 

                          (5.1)                                                                          

where,  .  In equation (5.1) and in subsequent 

equations we have taken off the bars over the symbols.   

The radius   is given by 

                              (5.2)                                                                

Since the method of solution used in [2] gives sufficiently 

good approximation to the exact solutions, we use the 

same method   to derive the solution of the present 

problem. We supplement the boundary conditions (4.4) 

by 

On the assumption that the solution within the boundary 

layer passes smoothly to that outside it.  Satisfying the 

boundary conditions (4.4) and (5.3) , we assume the 

velocity profile within  the boundary layer in the form 

   (5.4)                                                                              

The coefficient K   and the boundary layer thickness      

are functions of       and are to be determined by   the 

two equations   which we obtain below:                

Integrating the equation (4.3) over the boundary layer, we 

obtain 

  

             

2    

 2                   (5.5)                                                     

The equation (4.3)  at the meridian    is 

  (5.6)                                                                                    

Substituting (5 .4) in  the equations  (5.5) and  (5.6) , we 

have 

    

  

              (5.7) 

2M

                      (5.8) 

where   

 F=4+K  ,       ,    

         (5.9)                          
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The differential equations  (5.7)  and  (5.8)  are  solved      

by series method. Since the  flow is axially   symmetric,  

F and  M have only even powers of    . Thus, let 

  F  =   , M  =                                                                      

 Substituting the series for  and   in the 

equations   (5.7) and  (5.8) , and equating 

    the coefficients of different powers  of     

to zero , we obtain the pairs of simultaneous 

 linear equations  in    and    except 

 for    and   

  The values      and     are given in  

Table   I  for  n = 0,1,2,3,4,5  against  

(0,0)  , (0.05 , 0.025) , (0.1, .05)  ,(0.15 

, 0.075 ) and ( 0.2 , 0.1) 

VI. DISCUSSION 

The shearing stress on the surface of the sphere is given 

by 

=  =           (6.1)          

where                                                   

The variation of   along the meridian is not 

qualitatively different from that along the circumference 

of a cylinder  and hence , is not shown here .The 

location of the ring of separation on the surface of the 

sphere can be obtained from the condition  that the 

shearing stress   must vanish there.  For a 

Newtonian fluid   ( , the location of 

the ring of separation is given by      

 

 

0.00009  0      

(6.2) 

Solving the equation (6.2),we find that the separation 

occurs at   . This value differs from the 

exact value of  within an error of 1% only. Thus, 

it is expected that the locations of the rings of separation 

for   the     case of  second-order fluids   also will be 

within an error of same order.  The equations for 

determining the locations of the rings of separations for  

 

   are      respectively:   

.650064 1.27448 0.054462

 

3.650064 1.13911  

3.650064 1.00374 0.199214  

0.06342  +0.052834  0.0221544    =  0 

 

3.650064 0.0349466

 = 0         

Solving these equations, we find that the separation 

occurs at   = and 

  corresponding to                            

= ,(0.1, 0.05),(0.15, ) 

, (0.2,  

It is observed that for increase in the absolute values of 

second-order parameters, the   location of separation  

first shifts towards the stagnation point and then away 

from it , but remains earlier  than that  for a Newtonian fluid. The 

second-order effects are exhibited through non-dimensional 

parameters  which depend upon not only on second-order 

coefficients     but also on velocity      at infinity 

and  radius R  of the sphere. This is a peculiarity of a second-order 

fluid. This method may be applied to other bodies of revolution 

when the solution for the corresponding two-dimensional problem  

is known or is obtained. 
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(  (0,0) (0.05, 0.0250) (0.1, 05) (0.15, .075) (0.2, 01) 

 
9.200517 9.200517 9.200517 9.200517 9.200517 

 
3.650064 3.650064 3.650064 3.650064 3.650064 

 
3.087113 1.809362 0.53161 0.74614 2.02389 

 
0.18914 0.30723 0.42531 0.5434 0.66148 

 
0.706818 1.343592 2.056321 2.845006 3.709646 

 
0.05667 0.045883 0.158722 0.281844 0.415249 

 
0.138955 0.094679 0.00215 0.18295 0.47916 

 
0.01233 0.02681 0.03725 0.04417 0.04809 

 
0.026268 0.062717 0.233129 0.621621 1.318043 

 
0.00223 .002672 0.029799 0.093112 0.209222 

 
0.005945 0.01887 0.14805 0.47668 1.12761 

 0.00029 0.00768 0.03922 0.109 0.23342 


