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    Abstract- This paper is concerned with transient 

thermoelastic problem in which we need to determine the 

temperature distribution, displacement function and thermal 

stresses of a semi-infinite rectangular beam when the 

boundary conditions are known. Integral transform 

techniques are used to obtain the solution of the problem.   
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I. INTRODUCTION 

Khobragade et al. [2-7, 9] have investigated 

temperature distribution, displacement function, and 

stresses of a thin rectangular plate and Khobragade et al. 

[8] have established displacement function , temperature 

distribution and stresses of a semi-infinite rectangular 

beam.  

In this paper, an attempt has been made to determine 

the temperature distribution,  displacement function and 

thermal stresses of a semi-infinite rectangular beam 

occupying the region D : -a  x  a ;-b  y  b, 0  z  ∞ 

with known boundary conditions. Here Marchi-Fasulo 

transforms and Fourier cosine transform techniques have 

been used to find the solution of the problem. 

 

II. STATEMENT OF THE PROBLEM 

Consider a thin rectangular plate occupying the space 

D: a  x  a ; -b  y  b, 0  z  ∞.  The displacement 

components ux  and uy  uz in the x and y and z directions  

respectively as Tanigawa et al. [1] are                                
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where E, ν, and  λ  are the young’s modulus, Poisson’s 

ratio and the linear coefficient of the thermal expansion of 

the material of the beam respectively and U (x,y,z,t) is the 

Airy’s stress functions which satisfy the differential 

equation as Tanigawa et al. [1] is                                             
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where T(x,y,z,t) denotes the temperature of a rectangular 

beam satisfy the following differential equation as 

Tanigawa et al. [1] is                                
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where k is the thermal conductivity and   is the thermal 

diffusivity of the material,  

subject to initial condition 

0)0,,,( zyxT  (6) 

The boundary conditions are  
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The stress components in terms of U(x, y, z, t) Tanigawa 

et al. [1]    are given by  
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The equations (1) to (16) constitute the mathematical 

formulation of the problem under consideration. 

 

Fig 1: Geometry of the problem 

III. SOLUTION  OF THE PROBLEM 

Applying finite Marchi-Fasulo transform over the 

variables x and y and finite Fourier sine transform over z,  

we get   


*

2

*

Tq
dt

Td
  (16) 

This is a linear equation whose solution is given by 
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where, m, n, s are parameters of Marchi-Fasulo transform 

and sine transform respectively, 
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Now, applying inversion of Fourier sine transform and 

finite Marchi-Fasulo transform to the equation (18), one 

obtains the expression for temperature distribution as  
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where, 

 22222  sq nm   

Equation (19) is the required solution. 

 

IV. AIRY’S STRESS FUNCTIONS 

Substituting the value of temperature distribution 

T(x,y,z,t) from (20) in equation  (4) one obtains  
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V. DISPLACEMENT COMPONENTS 

Substituting the values of Airy’s stress function from 

equation (22) in the equation (1) to (3), one obtains 
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VI. DETERMINATION OF STRESS 

FUNCTION 

Substituting the value of Airy’s stress function 

U(x,y,z,t) from equation (22) in the equation  (14) to (16) 

one obtain the stress functions as,
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VII. SPECIAL CASE 
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Substituting the above value in equation (19) one obtains 
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VIII. NUMERICAL RESULTS 

Set ,86.0,2  a 1,3  tb sec in the 

equations (30) to obtain 
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IX. MATERIAL PROPERTIES 

The numerical calculations has been carried out for an 

Aluminum (pure) rectangular beam with the material 

properties as, 

Density ρ =169 lb/ft
 3
 

Specific heat = 0.208 Btu/lbOF 

Thermal conductivity K = 117
  
Btu/(hr. ftOF) 

Thermal diffusivity α = 3.33 ft2/hr. 

Poisson ratio ν = 0.35 

Coefficient of linear thermal expansion  

                                             αt  = 12.84 x 10
-6

1/F 

Lame constant µ = 26.67 

Young’s modulus of elasticity E = 70G Pa  

X. DIMENSIONS 

The constants associated with the numerical calculation 

are taken as  

Length of rectangular beam x = 4ft 

Breath of rectangular beam y = 3 ft 

Height of rectangular beam z = 10
3
ft                                                                                                                                            

XI. CONCLUSION 

In this article, the temperature distribution, unknown 

temperature gradient, displacement function and thermal 

stresses of a semi-infinite rectangular beam have been 

obtained, when the boundary conditions are known with 

the aid of finite Marchi-Fasulo transform and semi-

infinite Fourier cosine transform techniques. The results 

are obtain in the form of infinite series in terms of 

Bessel’s function. 
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APPENDIX 

 

Graph 1: Graph of temperature distribution versus x 

 


