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Abstract- In this paper an attempt has been made to 

determine the temperature distribution and thermal deflection 

of a cylinder in which sources are generated according to the 

linear function of the temperature, with known boundary 

conditions. The results are obtained as series of Bessel 

functions in the form of infinite series. Numerical calculations 

are carried out for a particular case of a cylinder made of 

Aluminium metal and the results are depicted graphically. 
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I. INTRODUCTION 
Nowacki [2] has determined steady-state thermal 

stresses in a circular plate subjected to an axisymmetric 

temperature distribution on the upper face with zero 

temperature on the lower face and the circular edge 

respectively. Roy Choudhary [5] discussed the normal 

deflection of a thin clamped circular plate due to ramp 

type heating of a concentric circular region of the upper 

face. This satisfies the time-dependent heat conduction 

equation. In this paper an attempt has been made to 

determine the temperature distribution and thermal 

deflection of a cylinder occupying the space „D‟ 

bra  ; hz 0 . The cylinder is considered 

having arbitrary initial temperature and subjected to 

radiation type boundary conditions which are fixed at 

)( ar   and )( br  . The non homogeneous type 

boundary conditions are maintained on plane surfaces of 

the cylinder. The governing heat conduction equation has 

been solved by using integral transform technique. The 

results are obtained in series form in terms of Bessel‟s 

functions. The results for thermal deflection have been 

computed numerically and are illustrated graphically.  

 

II. STATEMENT OF THE PROBLEM 

Consider the cylinder of length h occupying the space 

„ ‟ bra  ; hz 0 . The cylinder is considered 

having arbitrary initial temperature and subjected to 

radiation type boundary conditions which are fixed at 

)( ar   and )( br  . The non homogeneous type 

boundary conditions are maintained at plane surfaces of 

the disc. For time 0t , heat is generated within the 

cylinder at the rate ),,( tzrg . The differential equation 

satisfying the deflection function ),( tr as Khobragade 

[16] is given by 
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where TM  is the thermal moment of the cylinder defined 

as 
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D  is the flexural rigidity of the cylinder denoted as 
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ta , E  and v  are the coefficients of the linear thermal 

expansion, Young‟s modulus and Poisson‟s ratio of the 

material respectively and 
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Since the  curved surfaces of the cylinder is fixed and 

clamped, 
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  at  bar ,                                  (5) 

The temperature distribution of the cylinder ),,( tzrT  

at time t  satisfies the differential equation as Noda [5] is 
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With boundary conditions 
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     at    ar  ,  0t        (7) 
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     at    br  ,  0t        (8)   

),(1 trfT   at 0z ,  0t                         (9) 

),(2 trfT   at z ,  0t  (known)        (10) 

),( trFT   at hz  ,  0t  (unknown)    (11)                                     

 and initial condition is 

0),,( TtzrT   in bra  ; hz 0  for 0t   

                                                                     (12)                                        

where 1k  and 2k  are radiation constants on curved 

surfaces and plane surfaces of the cylinder respectively 

and   is thermal diffusivity of the material of the 

cylinder. 
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Equations (1) – (12) constitute mathematical formulation 

of the problem. 

 
Fig 1: Geometry of the problem 

 

III. SOLUTION OF THE PROBLEM 

Applying Marchi-Zgrablich transform defined in [1] to 

the equation (6) , using conditions (7) and (8) one obtains 
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Where T  is the Marchi-Zgrablich transform of T  and 

m  is the Marchi-Zgrablich transform parameter. 

Where 
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Applying Laplace transform defined in [5] to equation 

(13) one obtains 
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where  
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Solution of the differential equation (15) is given by 

  pzpz BeAeT *
P.I.                              (16) 

where A  and B  are arbitrary constants. 

Using equation (9) and equation (10) in equation (16), 

We get 
*

1)0( fBA                                          (17) 

*
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where 0|..)0(  zIP   and    zIP |..)(  

Solving (17) and (18) one obtains 
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Substituting the values of A  and B  in equation (16) one 

obtains 
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Applying inversion of Laplace transform and Marchi – 

Zgrablich transform to the equation (19) and using 

condition (11), one obtain 
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IV. DETERMINATION OF THERMAL 

DEFLECTION 

Using equation (20) in equation (2) one obtains 
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We assume the solution of equation (1) satisfying 

condition (5) as 
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where m  are the positive roots of the transcendental 

equation 

0),,(),,( 210210  bkkSakkS mm             (24) 

It can be easily seen that 
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Hence solution (22) satisfies condition (5). 

Now 
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We use the well known result 
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in equation (26) to obtain 
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Using equation (28) and equation (29) in the equation (1) 

one obtains 
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On solving equation (30) one obtains 
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Using equation (31) in equation (23) We get 
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V. SPECIAL CASE AND NUMERICAL RESULTS 

Setting )1()(),( 01
terrtrf    

 eerrtrf t )1()(),( 02
 ,               (33)     

a =2, b =3 , h =1, k1 = 0.25, k2 =0.25, k =0. 86, r0 =0.75, t 

= 1 sec. 5.0 , 2

2




 

 in equation (21) one 

obtains the unknown temperature gradient as 
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VI. CONCLUSION 

In this paper, the temperature distribution and thermal 

deflection of a finite length hollow cylinder have been 

determined in series form in terms of Bessel‟s functions 

by applying finite Marchi Zgrablich transform and 

Laplace transform techniques. The researchers have 

plotted the graphs taking the material properties of 
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aluminium, and the numerical computation has been 

inferred accordingly.  

Graph 1. In this graph the temperature distribution 

T(r,z,t) tends to decrease along the radius between 1.5 to 

3, 3 to 4.5 and 4.5 to 5.5, which shows a reduction in the 

rate of heat propagation in a sinusoidal form; while it 

tends to increase with heating time from t=0.5 to t=3.  

Graph 2. In this graph the temperature distribution 

T(r,z,t) alternates at different points of radius.  

Graph 3. The thermal deflection W(r,t) decreases at 

different intervals of radius, and tends to decrease with 

heating time from t=0.5 to t=3. The graph shows a 

sinusoidal nature. 

  Graph 4. The thermal deflection W(r,t) alternates at 

different points of radius. 

  Graph 5. In this graph the unknown temperature gradient 

F(r,t) tends to decrease along the radius between 1.5 to 3, 

3 to 4.5 and 4.5 to 5.5, which shows a reduction in the 

rate of heat propagation in a sinusoidal form; while it 

tends to increase with heating time from t=0.5 to t=3.  

  Graph 6. (F(r,t) versus t for different values of r): In this 

graph the unknown temperature gradient F(r,t) alternates 

at different points of radius. 

The results presented here may be useful in solving 

engineering problems, particularly for aerospace 

engineering for stations of a missile body not influenced 

by nose tapering.  
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APPENDIX 

The finite Marchi-Zgrablich integral transform is defined 

as  
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and its inversion is given by 
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Graph 1: T(r,z,t) versus t for different values of t 

)( xYp   are Bessel‟s functions of first and second kind 

respectively of order p . 

 

OPERATIONAL PROPERTY: 

 

















b

a

np dxxkkSf
x

p

x

f

xx

f
x ),,(

1
212

2

2

2

                

bx

np
x

f
kfbkkS

k

b












 221

2

),,(   

)(),,( 2
121

1

nf
x

f
kfakkS

k

a
pn

ax

np 















 

 
Graph 2: T(r,z,t) versus t for different values of r 

 
Graph 3: W(r,t) versus r for different values of t 

 
 

Graph 4: W(r,t) versus t for different values of r 
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Graph 5: F(r,t) versus r for different values of t 

 
Graph 6: F(r,t) versus t for different values of r 
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