

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 4, Issue 4, October 2014

215

An Overview: Real-Time Task Scheduling

Using Preprocess Scheduler
Dr. Sajidullah S. Khan, R. N. Khobragade, Dr. N. A. Koli

Assistant Professor, ICSR, VMV, JMT and J J P Science College, Nagpur.

Researcher, Dept. of Computer Science and Engg. Sant Gadge Baba Amravati University, Amravati.

Head, Computer Center, Sant Gadge Baba Amravati University, Amravati.

Abstract - A Real Time System is a system where the time at

which events occurs is important. Real Time Scheduling is

fundamentally concerned with satisfying application time

constraints. Task scheduling is the main activity in the design of

Real-Time System. It assures both functionality and safety of

such systems. RTS can be modeled as a set of periodic tasks that

must be completed before specific deadlines. Adaptive Real

Time Systems are designed to handle the undesirable effects

such as overload and deadline misses dynamically by softly

degrading performances. In adaptive soft real time system an

acceptable deadline misses and delays are tolerable. The main

objective of this work is to design and development of efficient

preprocess scheduler that will select the algorithm which is best

suited for the particular problem in the real time environment.

Keywords-Real Time System, Task Scheduling.

I. INTRODUCTION

A Real Time System is a system where the time at

which events occur is important. Real Time Scheduling is

fundamentally concerned with satisfying application time

constraints. Such as overload and deadline misses

Adaptive Real Time Systems are designed to handle the

undesirable effects dynamically by softly degrading

performances. In adaptive soft real time system an

acceptable deadline misses and delays are tolerable [Litoiu

& Tadei, 2001]. Task scheduling is the main activity in the

design of Real-Time System (RTS). It assures both

functionality and safety of such systems. RTS can be

modeled as a set of periodic tasks that must be completed

before specific deadlines. The scheduling algorithms used

in a particular application can have a significant impact on

the functionality of the real-time system. One effect is to

accumulate the aperiodic tasks at a point in time in an

overloaded system. In this situation the scheduler may not

be able to meet all of the aperiodic and periodic tasks

deadlines [Churnetski, 2003]. Every algorithm has a

specific set of type of input and produces the output

corresponding to the input pattern. In this paper the

objective is to find such the undesirable effects

dynamically by softly degrading performances. In adaptive

soft real time system an acceptable deadline misses and

delays are tolerable [Litoiu & Tadei, 2001]. Task

scheduling is the main activity in the design of Real-Time

System (RTS). It assures both functionality and safety of

such systems. RTS can be modeled as a set of periodic

tasks that must be completed before specific deadlines.

The scheduling algorithms used in a particular application

can have a significant impact on the functionality of the

real-time system. One effect is to accumulate the aperiodic

tasks at a point in time in an overloaded system. In this

situation the scheduler may not be able to meet all of the

aperiodic and periodic tasks deadlines [Churnetski, 2003].

Every algorithm has a specific set of type of input and

produces the output corresponding to the input pattern. In

this paper the objective is to find such algorithms and then

design a scheduler that will select the particular algorithm

depending upon the given input pattern.

II. SCHEDULING

A. Scheduling Mechanisms

A multiprogramming operating system allows more than

one process to be loaded into the executable memory at a

time and for the loaded process to share the CPU using

time-multiplexing. Part of the reason for using

multiprogramming is that the operating system itself is

maintaining the Integrity of the Specifications implemented

as one or more processes, so there must be a way for the

operating system and application processes to share the

CPU. Another main reason is the need for processes to

perform I/O operations in the normal course of

computation. Since I/O operations ordinarily require orders

of magnitude more time to complete than do CPU

instructions, multiprogramming systems allocate the CPU

to another process whenever a process invokes an I/O

operation. Here we are discussing the scheduling to

schedule the process for execution [David Kalinsky, 2004].

1. Context Switching

Typically there are several tasks to perform in a

computer system. So if one task requires some I/O

operation, you want to initiate the I/O operation and go on

to the next task. You will come back to it later. This act of

switching from one process to another is called a "Context

Switch". When you return back to a process, you should

resume where you left off. For all practical purposes, this

process should never know there was a switch, and it

should look like this was the only process in the system

[David Kalinsky, 2004]. To implement this, on a context

switch, you have to save the context of the current process

select the next process to run restore the context of this

new process.

2. What is the context of a process?

Program Counter, Stack Pointer, Registers Code + Data

+ Stack (also called Address Space). Other state

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 4, Issue 4, October 2014

216

information maintained by the OS for the process (open

files, scheduling info, I/O devices being used etc.) All this

information is usually stored in a structure called Process

Control Block (PCB). All the above has to be saved and

restored.

3. What does a context_switch() routine look like?

 context_switch() {

 Push registers onto stack

 Save ptrs to code and data.

 Save stack pointer

 Pick next process to execute

 Restore stack ptr of that process

 /* You have now switched the stack */

 Restore ptrs to code and data.

 Pop registers

 Return }

B. Non-Preemptive Vs Preemptive Scheduling

Non-Preemptive: Algorithms are designed so that once a

process enters the running state (is allowed a process), it is

not removed from the processor until it has completed its

service time (or it explicitly yields the processor).

context_switch () is called only when the process

terminates or blocks.

Preemptive: Preemptive algorithms are driven by the

notion of prioritized computation. The process with the

highest priority should always be the one currently using

the processor. If a process is currently using the processor

and a new process with a higher priority enters, the ready

list, the process on the processor should be removed and

returned to the ready list until it is once again the highest-

priority process in the system. context_switch() is called

even when the process is running usually done via a timer

interrupt.

III. TASK

A Task Ti is a sequential program that is activated

multiple times by external or internal events. At each

activation (also called job) a piece of code is executed, and

at the end of the allocated quantum task is blocked waiting

for the next activation.

A. Task Types

A task is a sequential program that is invoked for

execution by the occurrence of a particular event. Tasks

may be periodic, aperiodic or sporadic in nature. A

periodic task is characterized by a release time, a deadline,

and a period. The release time is the time at which the task

is ready to execute, the deadline is the time by which the

task must complete execution, and the period is the exact

spacing between successive invocations of the task. When

the release time of the task is specified before it is

scheduled, the task is called a concrete periodic task. When

release times are arbitrary, a task is invoked periodically

after its first release. Aperiodic tasks have soft or no

deadlines. Sporadic tasks are tasks that may enter and

leave the system at any time. Sporadic tasks are

characterized by a release time, a deadline, and a period.

For a sporadic task, the period represents the minimum

time after which the invocation of the next task occurs.

When release times are specified in advance, scheduling

decisions can be made off-line or statically. When release

times are arbitrary, scheduling decisions are made on-line.

Figure. 2 illustrate this classification [Litoiu & Tadei,

2001].

Fig 1. Classification of the different types of tasks

1. Periodic

Scheduling of the tasks that needs to run periodically

with the fixed periods can be periodic and can be done

with a CPU load very close to 1. An example of a periodic

task is as follows. There may be inputs at a port with

predetermine periods, and the inputs are in succession

without any time-gap [Raj Kamal, 2003].

2. Aperiodic

When a task needs to run only once, then it is aperiodic

(one shot) in an application [Raj Kamal, 2003].

3. Sporadic

When a task cannot be scheduled at fixed periods, its

schedule is called sporadic. For example, if a task is

expected to receive inputs at variable time gaps, then the

task schedule is sporadic. An example is the packets from

the routers in a network. The variable time gaps must be

within defined limits [Raj Kamal, 2003].

B. Task scheduling

Most RTOSs do their scheduling of tasks using a

scheme called "priority-based preemptive scheduling."

Each task in a software application must be assigned a

priority, with higher priority values representing the need

for quicker responsiveness. Very quick responsiveness is

made possible by the "preemptive" nature of the task

scheduling. "Preemptive" means that the scheduler is

allowed to stop any task at any point in its execution, if it

determines that another task needs to run immediately

[Liu, 2000]. The basic rule that governs priority-based

preemptive scheduling is that at every moment in time,

"The Highest Priority Task that is ready to Run will be the

Task that must be running." In other words, if both a low-

priority task and a higher-priority task are ready to run, the

scheduler will allow the higher-priority task to run first.

The low-priority task will only get to run after the higher-

priority task has finished with its current work [David

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 4, Issue 4, October 2014

217

Kalinsky, 2004]. What if a low-priority task has already

begun to run, and then a higher-priority task becomes

ready? This might occur because of an external world

trigger such as a switch closing. A priority-based

preemptive scheduler will behave as follows: It will allow

the low-priority task to complete the current assembly-

language instruction that it is executing. (But it won’t

allow it to complete an entire line of high-level language

code; nor will it allows it to continue running until the next

clock tick.) It will then immediately stop the execution of

the low-priority task, and allow the higher-priority task to

run. After the higher-priority task has finished its current

work, the low-priority task will be allowed to continue

running. This is shown in Figure 1, where the higher-

priority task is called "Mid-Priority Task." Of course,

while the mid-priority task is running, an even higher-

priority task might become ready. This is represented in

Figure 1 by "Trigger_2" causing the "High-Priority Task"

to become ready. In that case, the running task ("Mid-

Priority Task") would be preempted to allow the high-

priority task to run. When the high-priority task has

finished its current work, the mid-priority task would be

allowed to continue. And after both the high-priority task

and the mid-priority task complete their work, the low-

priority task would be allowed to continue running. This

situation might be called "nested preemption" [David

Kalinsky, 2004].

Fig 2: Timeline for Priority-based Preemptive Scheduling

Examples

Each time the priority-based preemptive scheduler is

alerted by an external world trigger (such as a switch

closing) or a software trigger (such as a message arrival); it

must go through the following 5 steps: called as "task

switching."

1. Determine whether the currently running task should

continue to run.

2. If not Determine which task should run next?

3. Save the environment of the task that was stopped (so it

can continue later).

4. Set up the running environment of the task that will run

next.

5. Allow this task to run.

3.3. Real Time System

Real-time Systems are computer systems that require

responses within specified time limits or constraints. Many

Real-time Systems are digital control systems comprised

entirely of binary logic or a microprocessor dedicated to

one software application that is own operating system. In

recent years, the reliability of general purpose real time

operating system (RTOS) consisting of a scheduler and

system resource management has improved [Churnetski,

2003].

1. Hard Real Time Task

Hard Real-time system are required to complete a

critical task within a guaranteed amount of time generally

a process is submitted along with a statement of the

amount of time in which it needs to complete or perform

I/O. The scheduler then either admits the process,

guaranteeing that the process will complete on time or

rejects the requests as impossible. This is known as

resource reservation such a guarantee required that the

scheduler know exactly how long each type of operating

system function takes to perform, and therefore each

operation must be guaranteed to take a maximum amount

of time. Such a guarantee is impossible in a system with

secondary storage or virtual memory, because these

subsystems cause unavoidable and unforeseen variation in

amount of time to execute a particular process. Therefore

Hard Real-time system are compose of special purpose

software running on hardware dedicated to their critical

process, and lack the full functionality of modern computer

and operating system [Churnetski, 2003].

2. Soft Real Time Task

Soft Real-time computing is less restrictive. It requires

that critical process receive priority over less fortunate

ones. Although adding soft real time functionality to a time

sharing system may cause an unfair allocation of resources

and may result in longer delays, or even starvation, for

some processes, it is at least possible to achieve. The result

is general purpose systems that can also multimedia, high

speed interactive graphics, and a variety of task that would

not function acceptably in an environment that does not

support soft real time computing. Implementing soft real

time functionality requires carefully design of the

scheduler and related aspect of the operating system. First,

the system must have priority scheduling, and real time

processes must not degrade over time, even though the

priority of non real time processes may. Second, the

dispatch latency must be small. The smaller the latency,

the faster a real time processes can start executing ones it

is run-able [Churnetski, 2003].

3 Adaptive

Adaptive Real-Time System is designed to handle the

undesirable effects such as overload and deadline misses,

dynamically by softly degrading performances. In

Adaptive Real-Time System, an acceptable deadline

misses and delays are tolerable [Ahmad et.al. 2003].

4. Scheduling Algorithm

Many dynamic scheduling algorithms are available as

follows:

1. Cyclic Scheduling

2. Deterministic Scheduling

3. Capacity Base Scheduling

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 4, Issue 4, October 2014

218

4. Dynamic Priority Scheduling

5. Earliest Deadline First

6. Least Slack Time

7. Value Function Scheduling.[Raj Kamal,2003],

IV. TASK SCHEDULING REQUIREMENTS

The following are the basic requirements of an RTOS:

1. Multi-tasking and preemptable: To support multiple

tasks in real-time applications, an RTOS must be multi-

tasking and preemptable. The scheduler should be able

to preempt any task in the system and give the resource

to the task that needs it most. An RTOS should also

handle multiple levels of interrupts to handle multiple

priority levels.

2. Dynamic deadline identification: In order to achieve

preemption, an RTOS should be able to dynamically

identify the task with the earliest deadline. To handle

deadlines, deadline information may be converted to

priority levels that are used for resource allocation.

Although such an approach is error prone, nonetheless

it is employed for lack of a better solution.

3. Predictable synchronization: For multiple threads to

communicate among themselves in a timely fashion,

predictable inter-task communication and

synchronization mechanisms are required. Semantic

integrity as well as timeliness constitutes predictability.

Predictable synchronization requires compromises.

Ability to lock/unlock resources is one of the ways to

achieve data integrity.

4. Sufficient Priority Levels: When using prioritized

task scheduling, the RTOS must have a sufficient

number of priority levels, for effective implementation.

Priority inversion occurs when a higher priority task

must wait on a lower priority task to release a resource

and in turn the lower priority task is waiting upon a

medium priority task. Two workarounds in dealing

with priority inversion, namely priority inheritance and

priority ceiling protocols (PCP), need sufficient priority

levels. In a priority inheritance mechanism, a task

blocking a higher priority task inherits the higher

priority for the duration of the blocked task. In PCP a

priority is associated with each resource which is one

more than the priority of its highest priority user. The

scheduler makes the priority of the accessing task equal

to that of the resource. After a task releases a resource,

its priority is returned to its original value. However,

when a task’s priority is increased to access a resource

it should not have been waiting on another resource.

5. Predefined latencies: The timing of system calls must

be defined using the following specifications:

 Task switching latency or the time to save the

context of a currently executing task and switch to

another.

 Interrupt latency or the time elapsed between the

execution of the last instruction of the interrupted

task and the first instruction of the interrupt

handler.

 Interrupt dispatch latency or the time to switch

from the last instruction in the interrupt handler

to the next task scheduled to run [Rivas &

Harbour, 2003].

V. REAL-TIME TASK MODEL

A real-time application is specified by means of a set of

tasks. Real-time tasks are the basic executable entities that

are scheduled; they may be periodic or aperiodic, and have

hard (late data are bad data) or soft (late data may still be

good data) real-time constraints. The quality of scheduling

depends on the exactness of these parameters, so their

determination is an important aspect of real-time design.

 r, task release time, i.e. the triggering time of the task

execution request.

 C, task worst-case computation time, when the processor

is fully allocated to it.

 D, task relative deadline, i.e. the maximum acceptable

delay for its processing.

 T, task period (valid only for periodic tasks). When the

task has hard real-time constraints, the relative deadline

allows computation of the absolute deadline d = r + D.

Transgression of the absolute deadline causes a timing

fault. Also, when tasks are allowed to access shared

resources, their access needs to be controlled in order to

maintain data consistency [Rivas & Harbour, 2003].

The Algorithms consider in this paper are as follows:

1) First Come First Serve (FCFS)

2) Shortest Job First (SJF), or Earliest

3) Deadline First (EDF)

4) Priority Scheduling Algorithm

5) Round Robin Scheduling Algorithm

The Input Parameters for the above algorithms are as

follows:

1. First Come First Serve (FCFS): Number of processes

& Deadline.

2. Shortest Job First (SJF): Number of processes, Arrival

time, Deadline.

3. Priority Scheduling Algorithm: Number of processes,

Priority, Deadline.

4. Round Robin Scheduling Algorithm: Number of

processes, Arrival time, Time quantum, Deadline.

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 4, Issue 4, October 2014

219

The Output Parameters for the above algorithms are as

follows: Waiting Time, Average Waiting Time, and

Completion Time.

VI. CONCLUSION

A Real Time System is a system where the time at

which events occur is important. Real Time Scheduling is

fundamentally concerned with satisfying application time

constraints. The main objective of this paper is to design

and development of efficient preprocess scheduler that will

select the algorithm which is best suited for the particular

problem in the real time environment called as preprocess

scheduler.

REFERENCES
[1] [Ahmad et.al., 2003] Idawaty Ahmad, S. Shamala, M.

Othman and Muhammad Fauzan Othman “A Preemptive

Utility Accrual Scheduling Algorithm for Adaptive Real

Time System”.

[2] [Churnetski, 2003] Kevin Churnetski “A comparison of

real-time scheduling algorithms using visualization of tasks

and evaluation of real-time extensions to Linux “Computer

Science-RIT in 2003.

[3] [David Kalinsky, 2004] David Kalinsky “Basic concepts of

real-time operating systems” www.linuxdevice.com.in 2004.

[4] [Litoiu & Tadei, 2001] Marin Litoiu, Roberto Tadei, “Fuzzy

scheduling with application to Real-time system”, Elsevier

Science B. V. in 2001.

[5] [Rivas & Harbour, 2003] Mario Aldea Rivas and Michael

González Harbour “MaRTE OS: An Ada Kernel for Real-

Time Embedded Applications” Department of Electronics

Compotators Universidad de Cantabria, 39005-Santander,

SPAIN.

[6] [Raj Kamal, 2003] Raj Kamal, “Embedded Systems

Architecture Programming and Design”, Tata McGraw-Hill,

2003.

