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Abstract - A Real Time System is a system where the time at 

which events occurs is important. Real Time Scheduling is 

fundamentally concerned with satisfying application time 

constraints. Task scheduling is the main activity in the design of 

Real-Time System. It assures both functionality and safety of 

such systems. RTS can be modeled as a set of periodic tasks that 

must be completed before specific deadlines. Adaptive Real 

Time Systems are designed to handle the undesirable effects 

such as overload and deadline misses dynamically by softly 

degrading performances. In adaptive soft real time system an 

acceptable deadline misses and delays are tolerable. The main 

objective of this work is to design and development of efficient 

preprocess scheduler that will select the algorithm which is best 

suited for the particular problem in the real time environment. 
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I. INTRODUCTION 

A Real Time System is a system where the time at 

which events occur is important. Real Time Scheduling is 

fundamentally concerned with satisfying application time 

constraints. Such as overload and deadline misses 

Adaptive Real Time Systems are designed to handle the 

undesirable effects dynamically by softly degrading 

performances. In adaptive soft real time system an 

acceptable deadline misses and delays are tolerable [Litoiu 

& Tadei, 2001]. Task scheduling is the main activity in the 

design of Real-Time System (RTS). It assures both 

functionality and safety of such systems. RTS can be 

modeled as a set of periodic tasks that must be completed 

before specific deadlines. The scheduling algorithms used 

in a particular application can have a significant impact on 

the functionality of the real-time system. One effect is to 

accumulate the aperiodic tasks at a point in time in an 

overloaded system. In this situation the scheduler may not 

be able to meet all of the aperiodic and periodic tasks 

deadlines [Churnetski, 2003]. Every algorithm has a 

specific set of type of input and produces the output 

corresponding to the input pattern. In this paper the 

objective is to find such the undesirable effects 

dynamically by softly degrading performances. In adaptive 

soft real time system an acceptable deadline misses and 

delays are tolerable [Litoiu & Tadei, 2001]. Task 

scheduling is the main activity in the design of Real-Time 

System (RTS). It assures both functionality and safety of 

such systems. RTS can be modeled as a set of periodic 

tasks that must be completed before specific deadlines. 

The scheduling algorithms used in a particular application 

can have a significant impact on the functionality of the 

real-time system. One effect is to accumulate the aperiodic 

tasks at a point in time in an overloaded system. In this 

situation the scheduler may not be able to meet all of the 

aperiodic and periodic tasks deadlines [Churnetski, 2003]. 

Every algorithm has a specific set of type of input and 

produces the output corresponding to the input pattern. In 

this paper the objective is to find such algorithms and then 

design a scheduler that will select the particular algorithm 

depending upon the given input pattern. 

II. SCHEDULING 

A.  Scheduling Mechanisms  

A multiprogramming operating system allows more than 

one process to be loaded into the executable memory at a 

time and for the loaded process to share the CPU using 

time-multiplexing. Part of the reason for using 

multiprogramming is that the operating system itself is 

maintaining the Integrity of the Specifications implemented 

as one or more processes, so there must be a way for the 

operating system and application processes to share the 

CPU. Another main reason is the need for processes to 

perform I/O operations in the normal course of 

computation. Since I/O operations ordinarily require orders 

of magnitude more time to complete than do CPU 

instructions, multiprogramming systems allocate the CPU 

to another process whenever a process invokes an I/O 

operation. Here we are discussing the scheduling to 

schedule the process for execution [David Kalinsky, 2004]. 

 

1. Context Switching  

Typically there are several tasks to perform in a 

computer system. So if one task requires some I/O 

operation, you want to initiate the I/O operation and go on 

to the next task. You will come back to it later. This act of 

switching from one process to another is called a "Context 

Switch". When you return back to a process, you should 

resume where you left off. For all practical purposes, this 

process should never know there was a switch, and it 

should look like this was the only process in the system 

[David Kalinsky, 2004]. To implement this, on a context 

switch, you have to save the context of the current process 

select the next process to run restore the context of this 

new process.  

 

2. What is the context of a process?  

Program Counter, Stack Pointer, Registers Code + Data 

+ Stack (also called Address Space). Other state 
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information maintained by the OS for the process (open 

files, scheduling info, I/O devices being used etc.) All this 

information is usually stored in a structure called Process 

Control Block (PCB). All the above has to be saved and 

restored.  

 

3. What does a context_switch() routine look like? 

   context_switch() { 

   Push registers onto stack 

   Save ptrs to code and data. 

   Save stack pointer 

   Pick next process to execute 

   Restore stack ptr of that process 

   /* You have now switched the stack */ 

   Restore ptrs to code and data. 

   Pop registers    

   Return    } 

 

B.  Non-Preemptive Vs Preemptive Scheduling 

Non-Preemptive: Algorithms are designed so that once a 

process enters the running state (is allowed a process), it is 

not removed from the processor until it has completed its 

service time (or it explicitly yields the processor). 

context_switch () is called only when the process 

terminates or blocks. 

Preemptive: Preemptive algorithms are driven by the 

notion of prioritized computation. The process with the 

highest priority should always be the one currently using 

the processor. If a process is currently using the processor 

and a new process with a higher priority enters, the ready 

list, the process on the processor should be removed and 

returned to the ready list until it is once again the highest-

priority process in the system. context_switch() is called 

even when the process is running usually done via a timer 

interrupt. 

III. TASK 

A Task Ti is a sequential program that is activated 

multiple times by external or internal events. At each 

activation (also called job) a piece of code is executed, and 

at the end of the allocated quantum task is blocked waiting 

for the next activation.  

 

A.  Task Types  

A task is a sequential program that is invoked for 

execution by the occurrence of a particular event. Tasks 

may be periodic, aperiodic or sporadic in nature. A 

periodic task is characterized by a release time, a deadline, 

and a period. The release time is the time at which the task 

is ready to execute, the deadline is the time by which the 

task must complete execution, and the period is the exact 

spacing between successive invocations of the task. When 

the release time of the task is specified before it is 

scheduled, the task is called a concrete periodic task. When 

release times are arbitrary, a task is invoked periodically 

after its first release. Aperiodic tasks have soft or no 

deadlines. Sporadic tasks are tasks that may enter and 

leave the system at any time. Sporadic tasks are 

characterized by a release time, a deadline, and a period. 

For a sporadic task, the period represents the minimum 

time after which the invocation of the next task occurs. 

When release times are specified in advance, scheduling 

decisions can be made off-line or statically. When release 

times are arbitrary, scheduling decisions are made on-line. 

Figure. 2 illustrate this classification [Litoiu & Tadei, 

2001]. 

 
Fig 1. Classification of the different types of tasks 

1. Periodic 

Scheduling of the tasks that needs to run periodically 

with the fixed periods can be periodic and can be done 

with a CPU load very close to 1. An example of a periodic 

task is as follows. There may be inputs at a port with 

predetermine periods, and the inputs are in succession 

without any time-gap [Raj Kamal, 2003].  

 

2. Aperiodic 

When a task needs to run only once, then it is aperiodic 

(one shot) in an application [Raj Kamal, 2003]. 

 

3. Sporadic 

When a task cannot be scheduled at fixed periods, its 

schedule is called sporadic. For example, if a task is 

expected to receive inputs at variable time gaps, then the 

task schedule is sporadic. An example is the packets from 

the routers in a network. The variable time gaps must be 

within defined limits [Raj Kamal, 2003]. 

 

B.  Task scheduling 

Most RTOSs do their scheduling of tasks using a 

scheme called "priority-based preemptive scheduling." 

Each task in a software application must be assigned a 

priority, with higher priority values representing the need 

for quicker responsiveness. Very quick responsiveness is 

made possible by the "preemptive" nature of the task 

scheduling. "Preemptive" means that the scheduler is 

allowed to stop any task at any point in its execution, if it 

determines that another task needs to run immediately 

[Liu, 2000]. The basic rule that governs priority-based 

preemptive scheduling is that at every moment in time, 

"The Highest Priority Task that is ready to Run will be the 

Task that must be running." In other words, if both a low-

priority task and a higher-priority task are ready to run, the 

scheduler will allow the higher-priority task to run first. 

The low-priority task will only get to run after the higher-

priority task has finished with its current work [David 
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Kalinsky, 2004]. What if a low-priority task has already 

begun to run, and then a higher-priority task becomes 

ready? This might occur because of an external world 

trigger such as a switch closing. A priority-based 

preemptive scheduler will behave as follows: It will allow 

the low-priority task to complete the current assembly-

language instruction that it is executing. (But it won’t 

allow it to complete an entire line of high-level language 

code; nor will it allows it to continue running until the next 

clock tick.) It will then immediately stop the execution of 

the low-priority task, and allow the higher-priority task to 

run. After the higher-priority task has finished its current 

work, the low-priority task will be allowed to continue 

running. This is shown in Figure 1, where the higher-

priority task is called "Mid-Priority Task." Of course, 

while the mid-priority task is running, an even higher-

priority task might become ready. This is represented in 

Figure 1 by "Trigger_2" causing the "High-Priority Task" 

to become ready. In that case, the running task ("Mid-

Priority Task") would be preempted to allow the high-

priority task to run. When the high-priority task has 

finished its current work, the mid-priority task would be 

allowed to continue. And after both the high-priority task 

and the mid-priority task complete their work, the low-

priority task would be allowed to continue running. This 

situation might be called "nested preemption" [David 

Kalinsky, 2004]. 
 

 
Fig 2: Timeline for Priority-based Preemptive Scheduling 

Examples 
 

Each time the priority-based preemptive scheduler is 

alerted by an external world trigger (such as a switch 

closing) or a software trigger (such as a message arrival); it 

must go through the following 5 steps: called as "task 

switching." 

1. Determine whether the currently running task should 

continue to run. 

2. If not Determine which task should run next?  

3. Save the environment of the task that was stopped (so it 

can continue later).  

4. Set up the running environment of the task that will run 

next.  

5. Allow this task to run. 

3.3. Real Time System 

Real-time Systems are computer systems that require 

responses within specified time limits or constraints. Many 

Real-time Systems are digital control systems comprised 

entirely of binary logic or a microprocessor dedicated to 

one software application that is own operating system. In 

recent years, the reliability of general purpose real time 

operating system (RTOS) consisting of a scheduler and 

system resource management has improved [Churnetski, 

2003]. 

 

1. Hard Real Time Task 

Hard Real-time system are required to complete a 

critical task within a guaranteed amount of time generally 

a process is submitted along with a statement of the 

amount of time in which it needs to complete or perform 

I/O. The scheduler then either admits the process, 

guaranteeing that the process will complete on time or 

rejects the requests as impossible. This is known as 

resource reservation such a guarantee required that the 

scheduler know exactly how long each type of operating 

system function takes to perform, and therefore each 

operation must be guaranteed to take a maximum amount 

of time. Such a guarantee is impossible in a system with 

secondary storage or virtual memory, because these 

subsystems cause unavoidable and unforeseen variation in 

amount of time to execute a particular process. Therefore 

Hard Real-time system are compose of special purpose 

software running on hardware dedicated to their critical 

process, and lack the full functionality of modern computer 

and operating system [Churnetski, 2003]. 

 

2. Soft Real Time Task 

Soft Real-time computing is less restrictive. It requires 

that critical process receive priority over less fortunate 

ones. Although adding soft real time functionality to a time 

sharing system may cause an unfair allocation of resources 

and may result in longer delays, or even starvation, for 

some processes, it is at least possible to achieve. The result 

is general purpose systems that can also multimedia, high 

speed interactive graphics, and a variety of task that would 

not function acceptably in an environment that does not 

support soft real time computing. Implementing soft real 

time functionality requires carefully design of the 

scheduler and related aspect of the operating system. First, 

the system must have priority scheduling, and real time 

processes must not degrade over time, even though the 

priority of non real time processes may. Second, the 

dispatch latency must be small. The smaller the latency, 

the faster a real time processes can start executing ones it 

is run-able [Churnetski, 2003]. 

 

3 Adaptive 

Adaptive Real-Time System is designed to handle the 

undesirable effects such as overload and deadline misses, 

dynamically by softly degrading performances. In 

Adaptive Real-Time System, an acceptable deadline 

misses and delays are tolerable [Ahmad et.al. 2003]. 

   

4. Scheduling Algorithm 

Many dynamic scheduling algorithms are available as 

follows: 

1. Cyclic Scheduling 

2. Deterministic Scheduling  

3. Capacity Base Scheduling  
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4. Dynamic Priority Scheduling 

5. Earliest Deadline First  

6. Least Slack Time  

7. Value Function Scheduling.[Raj Kamal,2003], 

IV. TASK SCHEDULING REQUIREMENTS 

The following are the basic requirements of an RTOS: 

1. Multi-tasking and preemptable: To support multiple 

tasks in real-time applications, an RTOS must be multi-

tasking and preemptable. The scheduler should be able 

to preempt any task in the system and give the resource 

to the task that needs it most. An RTOS should also 

handle multiple levels of interrupts to handle multiple 

priority levels. 

 

2. Dynamic deadline identification: In order to achieve 

preemption, an RTOS should be able to dynamically 

identify the task with the earliest deadline. To handle 

deadlines, deadline information may be converted to 

priority levels that are used for resource allocation. 

Although such an approach is error prone, nonetheless 

it is employed for lack of a better solution. 

 

3. Predictable synchronization: For multiple threads to 

communicate among themselves in a timely fashion, 

predictable inter-task communication and 

synchronization mechanisms are required. Semantic 

integrity as well as timeliness constitutes predictability. 

Predictable synchronization requires compromises. 

Ability to lock/unlock resources is one of the ways to 

achieve data integrity.  

 

4. Sufficient Priority Levels: When using prioritized 

task scheduling, the RTOS must have a sufficient 

number of priority levels, for effective implementation. 

Priority inversion occurs when a higher priority task 

must wait on a lower priority task to release a resource 

and in turn the lower priority task is waiting upon a 

medium priority task. Two workarounds in dealing 

with priority inversion, namely priority inheritance and 

priority ceiling protocols (PCP), need sufficient priority 

levels. In a priority inheritance mechanism, a task 

blocking a higher priority task inherits the higher 

priority for the duration of the blocked task. In PCP a 

priority is associated with each resource which is one 

more than the priority of its highest priority user. The 

scheduler makes the priority of the accessing task equal 

to that of the resource. After a task releases a resource, 

its priority is returned to its original value. However, 

when a task’s priority is increased to access a resource 

it should not have been waiting on another resource. 

 

5. Predefined latencies: The timing of system calls must 

be defined using the following specifications:  

 Task switching latency or the time to save the 

context of a currently executing task and switch to 

another.  

 Interrupt latency or the time elapsed between the 

execution of the last instruction of the interrupted 

task and the first instruction of the interrupt 

handler.  

 Interrupt dispatch latency or the time to switch 

from the last instruction in the interrupt handler 

to the next task scheduled to run [Rivas & 

Harbour, 2003]. 

V. REAL-TIME TASK MODEL 

A real-time application is specified by means of a set of 

tasks. Real-time tasks are the basic executable entities that 

are scheduled; they may be periodic or aperiodic, and have 

hard (late data are bad data) or soft (late data may still be 

good data) real-time constraints. The quality of scheduling 

depends on the exactness of these parameters, so their 

determination is an important aspect of real-time design. 

 r, task release time, i.e. the triggering time of the task 

execution request. 

 C, task worst-case computation time, when the processor 

is fully allocated to it.  

 D, task relative deadline, i.e. the maximum acceptable 

delay for its processing. 

 T, task period (valid only for periodic tasks). When the 

task has hard real-time constraints, the relative deadline 

allows computation of the absolute deadline d = r + D. 

Transgression of the absolute deadline causes a timing 

fault. Also, when tasks are allowed to access shared 

resources, their access needs to be controlled in order to 

maintain data consistency [Rivas & Harbour, 2003]. 

The Algorithms consider in this paper are as follows: 

1) First Come First Serve (FCFS) 

2) Shortest Job First (SJF), or Earliest 

3) Deadline First (EDF) 

4) Priority Scheduling Algorithm 

5) Round Robin Scheduling Algorithm 
 

 

 

The Input Parameters for the above algorithms are as 

follows: 

1. First Come First Serve (FCFS): Number of processes 

& Deadline. 

2. Shortest Job First (SJF): Number of processes, Arrival 

time, Deadline. 

3. Priority Scheduling Algorithm: Number of processes, 

Priority, Deadline. 

4. Round Robin Scheduling Algorithm: Number of 

processes, Arrival time,      Time quantum, Deadline. 
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The Output Parameters for the above algorithms are as 

follows: Waiting Time, Average Waiting Time, and 

Completion Time. 

VI. CONCLUSION 

A Real Time System is a system where the time at 

which events occur is important. Real Time Scheduling is 

fundamentally concerned with satisfying application time 

constraints. The main objective of this paper is to design 

and development of efficient preprocess scheduler that will 

select the algorithm which is best suited for the particular 

problem in the real time environment called as preprocess 

scheduler. 
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