
                                                       
   

 

ISSN: 2277-3754   

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 4, Issue 4, October 2014 

92 

 

 

 

Abstract— this paper deals with the free vibration analysis of 

single-walled carbon nanotube (SWCNT) bounded at the ends, 

with translational and elastic constraints, and attached mass. The 

nanotube is modelled as a beam and the effect of small length 

scale based on the nonlocal elasticity theory is considered. The 

governing equations of motion are derived using a variational 

approach and the free frequencies of vibrations are obtained 

employing the cell discretization method (CDM) in which the 

nanotube is reduced to a set of rigid bars linked together by elastic 

cells. The resulting discrete system takes into account nonlocal 

effects, constraint elasticity’s and added mass. The natural 

frequencies and corresponding shift frequencies are calculated 

and numerical results for different boundary conditions are 

illustrated. Comparisons of the present numerical results with 

those from the open literature show an excellent agreement. 

 
Index Terms—single-walled carbon nanotube, frequency 

analysis, non-local effect, boundary conditions, Cell 

Discrimination Method.  

I. INTRODUCTION 

Carbon nanotubes (CNTs) constitute a prominent example 

of nanomaterials and nanostructures which have inspired 

extensive research activities in science and engineering field. 

Their discovery, since the publication of Iijima’s paper [1] in 

1991, has stimulated intensive studies to fulfil their potential 

applications in a variety of fields of engineering due to their 

extraordinary mechanical, physical and electrical properties. 

Numerous investigations for determining their physical 

properties and unique electronic properties are available in 

the literature, see, for example, [2-4]. Their high stiffness and 

strength, coupled with low density, have lead to carbon 

nanotubes (CNTs) usage in the emerging field of applications 

in nanoelectronics, nanodevices, nanocomposites, 

bio-nano-composites and so on [5–9]. Several investigations 

have shown that CNTs possess extraordinary strength, which 

is measured up to 100 times that of steel at one-sixth of the 

weight [10], as well as superior electrical and thermal 

conductivities. Moreover, such outstanding properties make 

CNTs promising candidates for resolution mass sensor and 

several studies have investigated the use of CNTs as a mass 

sensor [11-14]. In the earlier studies, the investigations on 

carbon nano tubes have mainly focused on numerous 

experiments [15] although these texts, at nanoscale, are very 

cumbersome. In addition, several studies on the material 

properties and mechanical behaviours of CNTs have been 

conducted by using either atomistic modelling or continuum 

mechanics modelling. Among the methods of atomistic 

simulations, the classical molecular dynamic (MD) 

simulations are the most common method in investigating the 

behaviour of CNTs [16-17]. In molecular dynamics 

simulations, atoms are considered as particles interacting to 

each other by means of several types of potential fields. 

Although those simulations generate abundant results for 

understanding the behaviour of structures, the atomistic 

model involves complex computational processes and is still 

formidable and expensive, especially for large-sized atomic 

system, and this explain why, in recent years, the continuum 

models play an essential role in the study of CNTs. Several 

researchers implemented the elastic models of beams to study 

the dynamic problems, such as vibration and wave 

propagation, of carbon nanotubes [18-20]. Although the 

classical continuum methods are efficient in performing 

mechanical analysis of CNTs, their applicability to identify 

the small-scale effects on carbon nanotubes mechanical 

behaviours is questionable. The importance of size effect has 

been pointed out in a number of studies where the size 

dependence of the properties of nanotubes have been 

investigated. For example, Sun and Zhang, in [21], discussed 

the scarce applicability of continuous models to 

nanotechnology and proposed a semi-continuum model in 

studying nano-materials. At this point, the nonlocal elastic 

continuum models are more pertinent in predicting the 

structural behaviour of nanotubes because of being capable of 

taking into account the small-scale effects. It is well-known 

that the nonlocal elasticity theory assumes that the stress state, 

at a given reference point, is considered to be a function of the 

strain field at all points of the body. The origins of the 

nonlocal theory of elasticity go to pioneering works, 

published in early 80s, by Eringen [22]. In [23] Reddy reports 

a complete development of the classical and shear 

deformation beam theories using the nonlocal constitutive 

differential equations and derived the solutions for bending, 

buckling and natural frequencies problems of simply 

supported beams. In recent years, many researchers have 

applied the nonlocal elasticity concept to bending, buckling 

and vibration analysis of nanostructures. Although initiated 

by the work of Eringen, the possibility of using the nonlocal 

continuum theory in the field of nanotechnology was first 

reported by Peddieson et al. [24]: the Authors have used 

nonlocal Euler-Bernoulli model for static analysis of 

nano-beams and particular attention is paid to cantilever 

beams which are often used as actuators in small-scale 
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systems. Further applications of the nonlocal elasticity theory 

have been employed in studying the buckling problem 

[25-26] and vibration problems, by applying Euler-Bernoulli 

beam and shell theories and Timoshenko beam theory, in 

CNTs [25-30]. Wang and Hu [31] presented a study on the 

flexural wave propagation in a single-walled carbon nanotube 

(SWCNT) through the use of the nonlocal continuum 

mechanics and the molecular dynamics simulation based on 

the Terroff–Brenner potential. Lu et al. [32] established a 

nonlocal Euler–Bernoulli beam model to obtain frequency 

equations and modal shape functions of simply supported, 

clamped and cantilever beams. Reddy and Pang [33] 

reformulated the equation of motion of the Euler-Bernoulli 

and Timoshenko beam theories, using the nonlocal 

differential constitutive relations of Eringen. Following this 

approach, the equations of motion are used to evaluate the 

static bending, vibration and buckling responses of beams 

with various boundary conditions. This paper focuses on the 

study of free vibration analysis of SWCNT, bounded at the 

ends, with translational and elastic constraints, and attached 

masses, by using Cell Discretization Method (CDM) and in 

the presence of nonlocal effect. The method has already been 

used by the authors [34] and by Raithel and Franciosi [35] for 

different structural problems. Recently, De Rosa and 

Lippiello [18] have employed the CDM to investigate the free 

vibration frequencies problem of coaxial double-walled 

carbon nanotubes (DWCNTs). In addition, in [36], the 

Authors dealt with the variational problem of the nanotube, 

bounded at the ends and attached mass, located in a generic 

position, and the closed-form nonlocal frequency expression 

has been derived by means of the Hamilton's principle; then 

the resonant frequency and corresponding shift frequency 

have been calculated. Finally, De Rosa et al. [37] have 

proposed three different approaches to calculate the free 

vibration frequencies of a cantilever nanotube with, and 

without, an attached distributed mass. It is shown that the 

size-effects must be taken into account, and the frequencies 

have to be calculated according to the nonlocal elasticity 

theory. The nanotube is reduced to a set of rigid bars, linked 

together by elastic cells, where masses and stiffness’s are 

supposed to be concentrated. The resulting discrete system is 

simple enough to allow to take into account nonlocal effects, 

constraint elasticity’s and attached mass. The natural 

frequencies are calculated and it is possible to derive the 

relative shift frequencies; then numerical results for different 

boundary conditions are performed in order to evaluate the 

effect of the nonlocal coefficient on the natural frequency 

value. Comparisons of the present numerical results with 

those from the open literature show an excellent agreement. 

II. THEORETICAL APPROACH 

Let us consider the single-walled carbon nanotube, with 

span L, mass density , Young's modulus E, cross-sectional 

area A and second moment of area I. The small-scale effect is 

taken into account by using the nonlocal theory for 

Euler-Bernoulli beam theory, so that the parameter  = e0a is 

introduced, where e0 is a material constant, which has to be 

determined through experimental results, and a is an internal 

characteristic length of the nanotube. In order to analyze the 

dynamic behavior of the structure under consideration, the 

governing equations of motion, by considering the small-scale 

effect, have been derived using a variational approach:  
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Where kRL and kTL are rotational and translational stiffness 

respectively at z=0, while, analogously, kRR and kTR are 

rotational and translational stiffness at z=L, respectively. In 

the above equations, the abscissa z represents the spatial 

coordinate while t is the time; in (1) and (2) T denotes the 

kinetic energy, Le is the strain energy and P is the potential 

energy due to nonlocal inertia forces. 

III. DISCRETIZATION OF SWCNT BY MEANS OF 

CDM METHOD 

In this section the so-called “Cell Discretization Method” 

(CDM), employed to analyze the dynamic behaviour of 

structure under consideration, is discussed. The nanotube is 

reduced to a set of t rigid bars with length l connected by n 

elastic cells, (see Fig. 1).  

  
Fig 1: Structural system CDM. 

The moment of inertia I and the cross-sectional area A will 

be evaluated at the cells abscissae, obtaining the concentrated 

stiffness k=EI/l and the concentrated masses m=Al for the 

nanotube. Both these quantities can be organized into the 

so-called unassembled stiffness diagonal matrix k and the 

unassembled mass diagonal matrix m, with dimension (n  n). 

In this way, the structure is reduced to a classical holonomic 

system, with n degrees of freedom; in particular, n vertical 

displacements v, at the cells abscissae will be conveniently 

assumed as Lagrangian coordinates and will be organized into 
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the n-dimensional vector v. Moreover, for the single-walled 

carbon nanotube, the n-1 rotations of the rigid bars can be 

calculated as a function of the Lagrangian coordinates as 

follows: 

1 , 1,... 1.i i
i

v v
i n

l
  
                                                     (3) 

or, in matrix form:  = Vv, where V is a rectangular transfer 

matrix with n-1 rows and n columns. 

The relative rotations between the two faces of the elastic 

cells are given by: 

 

1 1 1 1, , .i i i n n                                        (4) 

 

or in matrix form  =  , where Δ is a rectangular transfer 

matrix with n rows and n-1 columns. 

The strain energy Le, (the first term of (2)), is concentrated at 

the cells of the nanotube, and is given by: 
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The strain energy should be expressed as functions of the 

Lagrangian coordinates, by using (4) and (5), as follows: 
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so that, the total strain energy can be expressed as: 
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where K = (V
T


T 
k  V) is the assembled stiffness matrix. 

The last term of (2), as function of the Lagragian coordinates, 

assumes the following form: 
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by defining the assembled nonlocal effects matrix Mn1 = (2
 

mn1  V), the equation (9) assumes the following form: 
T

n1P . v M v  (10) 

 

The kinetic energy, Eq. (1), is simply expressed as: 
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and it can be re-written as: 
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2
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Finally, the equation of motion will have the following form: 

 

t .M v + Kv = 0  (13) 

 

where Mt is the global assembled stiffness matrix: 

 

nl + .tM = M M  (14) 

 

and 0 is a null vector. 

The problem of vibration analysis consists of determining the 

conditions under which the equilibrium equation (13) can be 

satisfied. One assumes that the free motion is a simple 

harmonic motion of the form: 

 

   t cos t .i  v D  (15) 

 

where D is the mode shape that is time-independent. By 

deriving twice the equation (15) respect to t, one gets: 
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substitution of this expression into (13) gives 
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where 
2
i are the frequencies of natural vibration, or 

eigenvalues, and, as already said, D is the mode shape or 

eigenvector. A solution to this homogeneous system of 

equation exists only if the determinant of the coefficient's 

matrix set equal to zero: 
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The boundary conditions are: 
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and they represent added terms of mass and flexibilities 

matrix of the motion equation. The strain energy of the 

vertically flexible constraints, of (2), as a function of the 

Lagrangian coordinates, is given by: 
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so that the assembled stiffness matrix must be modified as 

follows: 

 

   
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TL
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The presence of vertically flexible intermediate supports can 

be similarly dealt with. If the constraint is placed at given 

abscissa (see Fig. 2) its strain energy is equal to: 
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Consequently the following terms are added at the stiffness 

matrix: 
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where lv is the length of rigid bar among the flexible constraint 

and elastic cell i, and khv is the intermediate support stiffness. 

 
Fig 2: Structural system CDM with intermediate support 

stiffness. 

The rotational stiffness of the four end constraints can be 

taken into account by summing up the corresponding 

flexibilities with the flexibilities of the end elastic cells. For 

example, for the end constraints, one gets: 
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These terms will be included in the matrix k of (6). In order to 

take into account the boundary conditions (19-22) the global 

mass matrix must be modified as follows: 
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The presence of added concentrated masses can be similarly 

dealt with. If the mass is placed at given abscissa (see Fig. 3) 

its strain energy is equal to: 
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Consequently the terms of the mass matrix must be added to 

the following terms: 
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where lm is the length of rigid bar among the concentrated 

mass M and elastic cell i.  

 
Fig 3: Structural system CDM and added mass. 

 

IV. NUMERICAL COMPARISONS 

In order to show the potentialities of the proposed approach 

(CDM), several numerical examples have been performed; 

using a general code developed in Mathematica [38], and the 

obtained results are compared with those of available works 

in literature and listed in bibliography.  

A. Numerical comparison between CDM and analytical 

approach of a SWCNT with various boundary conditions 

and in presence of nonlocal parameter. 

A first numerical comparison has been performed with 

reference to the paper by Reddy and Pang [33], in which the 

equations of motion of the Euler- Bernoulli and Timoshenko 

beam theories, reformulated using the non local differential 

constitutive relation of Eringen [22], are used to evaluate the 
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static bending, vibration and buckling responses of beams 

with various boundary conditions.  

Table 1 shows properties of a single-walled carbon nanotube 

(SWCNT) which will be used to the numerical comparison. 

 

SWCNT 

properties 

density

Symbol Value Unit 

Inner diameter D1 0.68*10-9 m 

Outer diameter D2 0.8*10-9 m 

Length L 10*10-9 m 

Density  2240 Kg/m3 

Young's 

modulus 

E 1*1012 Pa 

Table 1: Single-walled carbon nanotube properties. 

 

Assuming the nonlocal parameter value =e0a /L = 0.4, the 

first three circular frequencies have been calculated by using 

CDM method, with a lower number cells i.e. n = 500, and 

exact approach, so as deduced to [33]. The SWCNT is 

modelled as an Euler-Bernoulli beam with various boundary 

conditions at two ends which are of a variety of combinations, 

namely supported-supported (S-S), clamped-clamped (C-C), 

clamped-free (C-F) and clamped-supported (C-S). The 

numerical comparison, between the results given by the 

proposed method (CDM) and the results given by Reddy and 

Pang [33], is illustrated in Table 2. As it can be seen, the 

circular frequencies values show an excellent agreement 

among the results obtained by employing the two procedures.  

 

Boundary 

conditions 

Method    

S-S [33] 3.40838 

×1011 

8.09454 

×1011 

1.26308 

×1012 

CDM 3.40837 

×1011 

8.09448 

×1011 

1.26306 

×1012 

C-C [33] 7.15706 

×1011 

1.17243 

×1012 

6.07502 

×1012 

CDM 7.15699 

×1011 

1.17241 

×1012 

1.66169 

×1012 

C-F [33] 2.11816 

×1011 

6.20757 

×1011 

1.2976 

×1012 

CDM 2.11816 

×1011 

6.20751 

×1011 

1.2976 

×1012 

C-S [33] 5.05024 

×1011 

9.92921 

×1011 

1.45459 

×1012 

CDM 5.05022 

×1011 

9.92909 

×1011 

1.45456 

×1012 

Table 2- Numerical comparison among Reddy-Pang [33] and 

CDM of SWCNT: the first three circular frequencies associated 

to four type boundary conditions are reported. 

B.  Effect of the nonlocal parameter and added mass on 

the natural frequency of a fixed –free SWCNT. 

In the following numerical example, the fixed-free 

single-walled nanotube, with attached mass at the free end, is 

considered. In recent years, fixed-free SWCNTs have 

attracted a lot of interest due to their suitability for a wide 

range of applications, such as vacuum microelectronic 

devices, nanosensors and nanoactuators. In addition, a 

particular attention has been devoted to a fixed-free SWCNTs 

based mass –sensor; in fact, the essence of mass sensing in a 

resonator is based on the fact that it is natural frequencies is 

sensitive to the added mass. In this numerical example the 

effects of the added mass and the nonlocal parameter on the 

natural frequency shift are considered and discussed widely. 

Based on a cantilever beam model with a rigid mass at the free 

end, an analytical solution and approximate numerical 

procedure have been employed. In Table 3, the geometrical 

and material properties of single-walled carbon nanotube, so 

as deduced from the paper of Mehdipour et al. [13], are 

reported.  

 

SWCNT 

properties 

Symbol Value Unit 

Inner diameter D1 18.8 10-9  m 

Outer diameter D2 33 10-9  m 

Density  1330 Kg/m3 

Length L 5.5 10-6  m 

Young’s modulus E 32 109  Pa 

Table 3 - Geometrical and material properties of the 

single-walled carbon nanotube, [13]. 

In this numerical example, the comparison with the results 

given by the exact procedure, so as deduced in [37], and those 

obtained by Mehdipour et al. [13], in the absence of the 

nonlocal effects (see Table 2 of [13]), is performed. Table 4 

summarizes the results of the natural frequencies of the 

fixed-free SWCNT for various added mass and nonlocal 

effect values  = [0,0.1,0.5]. 

 

Attached 

mass (fg) 

[13] Exact value 

 

CDM 

 

0  861556.099 861553.410 

20 190401.785 190401.785 190401.630 

22 181934.726 181934.727 181934.547 

24 174505.207 174505.207 174504.928 

26 167917.297 167917.297 167917.161 

28 162023.235 162023.236 162023.048 

30 156709.208 156709.202 156709.003 

35 145419.280 145419.280 145419.165 

40 136263.504 136263.504 136263.382 

50 122175.371 122175.371 122175.239 

a) 

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 865297.483 865293.769 

20 190458.580 190458.232 

22 181984.329 181983.981 

24 174549.017 174548.672 

26 167956.359 167956.027 

28 162058.350 162058.033 

30 156740.992 156740.701 

35 145444.711 145444.457 

40 136284.446 136284.165 

50 122190.484 122190.264 

b) 
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Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 1001753.90 1001749.17 

20 191850.755 191850.376 

22 183197.961 183197.595 

24 175619.250 175618.892 

26 168909.364 168909.001 

28 162914.065 162913.736 

30 157514.913 157514.595 

35 146062.595 146062.310 

40 136792.486 136792.225 

50 122556.341 122556.102 

c) 

Table 4 - Comparison of natural frequency for fixed-free 

SWCNT with different mass additions and in absence and 

presence of nonlocal effect. 

In the first column of Table 4, the values of the 

concentrated mass, at the free end, are reported; the second 

and third column give the natural frequency values, f1 = 1/2π, 

in the absence of nonlocal effects and for increasing values of 

the attached concentrated mass. As can be observed, the 

numerical comparison shows that the two procedures lead to 

the same results, as obtained by solving the boundary value 

problem. The fourth column of the Table 4 gives, instead, the 

values of the first natural frequency, by using the Cell 

Discretization Method (CDM), for varying values of the 

attached mass M. The results have been obtained with zero 

non-dimensional stiffness coefficients kTR and kRR while kTL 

and kRL are large enough. As can be observed, the results 

provide an excellent agreement. Finally, in the other columns 

of Table 4 the first natural frequency values have been 

reported introducing the non-dimensional nonlocal parameter 

 = [0.1,0.5]. The results have been obtained by solving the 

equations of motion, so as deduced to [39], and by means of 

CDM method. The natural frequency values show that the 

exact results are in good agreement with the CDM simulation 

results and the correctness of the proposed numerical method.  

From Table 4, the following considerations apply: 

- If the concentrated mass value increases, the natural 

frequency values decrease; 

- If the nonlocal effect increases, the natural frequency 

values increase, as observed in [33] applying the 

Equation 163.  

 

C. Effect of nonlocal parameter and added mass on the 

natural frequency on SWCNT with various boundary 

conditions. 

In this numerical examples, one evaluates the variation of 

natural frequency for a SWCNT with an added mass and with 

various boundary conditions. The added mass is located at the 

midspan of the nanotube and the numerical calculations have 

been performed for clamped- clamped (Table 5), 

supported-supported (Table 6) and clamped-supported (Table 

7) single-walled carbon nanotube and setting the small-scale 

parameter equal to . For all numerical examples, 

the same material and geometrical data, given in Table 3, are 

adopted.  

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 5482297.14 5481206.68 

20 1502749.43 1502724.97 

22 1437598.15 1437575.50 

24 1380245.33 1380223.93 

26 1329250.06 1329228.63 

28 1283518.54 1283498.00 

30 1242203.48 1242183.34 

35 1154174.73 1154156.16 

40 1082546.72 1082529.60 

50 971943.84 971928.10 

a) 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 5172508.06 5172429.74 

20 1495729.82 1495706.22 

22 1431449.12 1431426.48 

24 1374800.74 1374779.02 

26 1324385.00 1324364.03 

28 1279137.03 1279116.76 

30 1238230.41 1238210.79 

35 1150985.96 1150967.68 

40 1079914.34 1079897.20 

50 970037.451 970022.04 

b) 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 2693298.79 2693276.24 

20 1351852.69 1351834.13 

22 1303856.38 1303838.27 

24 1260630.78 1260613.10 

26 1221435.04 1221417.71 

28 1185679.89 1185663.00 

30 1152889.98 1152873.45 

35 1081502.99 1081487.28 

40 1021917.89 1021902.80 
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50 927361.577 927347.74 

c) 

Table 5 - Comparison of natural frequency for clamped-clamped 

SWCNT with different mass additions and in absence and in 

presence of nonlocal effect. 
 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 2418424.61 2418416.77 

20 743117.78 743114.97 

22 711558.90 711556.85 

24 683706.48 683702.99 

26 658887.61 658884.75 

28 636588.84 636585.67 

30 616410.71 616408.56 

35 573318.15 573315.46 

40 538159.17 538157.47 

50 483713.87 483711.17 

a) 

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 2307245.31 2307237.82 

20 739715.77 739715.77 

22 708571.04 708568.23 

24 681055.07 681052.37 

26 656513.93 656511.35 

28 634447.60 634445.11 

30 614466.29 614463.81 

35 571753.02 571750.79 

40 536864.29 536862.07 

50 482773.15 482771.27 

b) 

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 1298764.81 1298761.88 

20 669803.40 669801.04 

22 646434.21 646431.91 

24 625349.70 625347.46 

26 606200.62 606198.49 

28 588708.12 588705.97 

30 572646.50 572644.40 

35 537615.74 537613.74 

40 508313.42 508311.51 

50 461703.77 461702.07 

c) 

Table 6 – Comparison of natural frequency for 

supported-supported SWCNT with different mass additions and 

in absence and in presence of nonlocal effect. 
 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 3778040.81 3778006.45 

20 1127770.95 1127766.06 

22 1079539.32 1079525.21 

24 1037008.30 1036998.08 

26 999136.95 999122.23 

28 965132.36 965122.78 

30 934378.43 934369.17 

35 868751.33 868742.66 

40 815255.60 815247.18 

50 732495.53 732484.72 

a) 

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 3577356.99 3577326.52 

20 1122233.41 1122221.99 

22 1074681.64 1074670.67 

24 1032701.94 1032691.40 

26 995285.01 995274.81 

28 961660.19 961650.34 

30 931227.50 931217.95 

35 866218.43 866209.53 

40 813162.16 813153.79 

50 730976.88 730969.35  

b) 

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 1907298.47 1907288.62 

20 1008947.14 1008938.29 

22 974062.50 974053.84 

24 942550.26 942541.80 

26 913901.73 913893.44 

28 887709.16 887701.04 

30 863641.48 863633.55 

35 811095.54 811087.94 

40 767091.05 767083.79 

50 697012.23 697005.51 

c) 

Table 7 - Comparison of natural frequency for 

clamped-supported SWCNT with different mass additions and 

in absence and in presence of nonlocal effect. 
 

For all three numerical examples, the natural frequency 

values show that the CDM simulation results are in excellent 

agreement with the exact results. As can be seen in Table 5-7, 

the natural frequency parameter of SWCNT decreases with 

increasing values of the attached mass and of the nonlocal 

effect parameter. Known the natural frequency value, it is 

possible to derive the non-dimensional frequency shift f by 

the following expression: f = (f0-f1)/f0, where f0 is the 

non-dimensional frequency of the nanotube without added 

mass and neglecting the non local effect, and f1 is the 

non-dimensional frequency with added mass and non local 

effect. In this way, it is possible to evaluate the nonlocal 

parameter influence on the relative frequency shift of the 

sensor with added mass.   

D. Influence of nonlocal parameter, added mass and 

non-dimensional stiffness coefficient KTR = 10 on the 

natural frequency of fixed at left SWCNT. 

Let us consider a nanotube clamped at left and at the right 

side, constrained by an elastically flexible spring, with 
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non-dimensional stiffness coefficient 
3

TR

TR

k L
K 10

EI
  , and 

having a concentrated mass M, at the right end. For this 

numerical example the material and geometrical properties, 

given in Table 3, are adopted, and the aim is to evaluate the 

behaviour of natural frequency of the nanotube bounded at the 

left end with translational constraint. In Table 8 the natural 

frequency values are reported and for varying values of the 

attached mass between 0 and 50, whereas the nonlocal effect 

values  vary between 0,0.1 and 0.5.  

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 1706423.42 1706419.0

7 

20 396309.47 396309.27 

22 378692.76 378692.66 

24 363233.51 363233.39 

26 349524.61 349524.48 

28 337258.94 337258.79 

30 326199.88 326199.75 

35 326199.88 302703.06 

40 283646.99 283646.90 

50 254323.62 254323.52 

a) 

 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 1701968.39 1701963.6

2 

20 396422.62 396422.40 

22 378791.99 378791.79 

24 363321.45 363321.26 

26 349603.24 349603.07 

28 337329.79 337329.62 

30 326264.15 326263.99 

35 302754.78 302754.62 

40 283689.65 283689.51 

50 254354.54 254354.42 

b) 

Attached 

mass (fg) 

Exact value 

 

CDM 

 

0 1663006.59 1663003.2

3 

20 399291.61 399291.38 

22 381295.57 381295.36 

24 365531.06 365530.85 

26 351572.18 351571.97 

28 339098.77 339098.58 

30 327864.84 327864.67 

35 304034.00 304033.84 

40 284742.22 284742.09 

50 255113.29 255113.16 

c) 

Table 8 - A clamped nanotube constrained by an elastically 

flexible spring, with non-dimensional stiffness coefficient KTR = 

10, and having a concentrated mass. 

Table 8 contains the exact values, so as obtained by solving 

the boundary value problem, and the results of the 

approximate method CDM, in absence and in presence of the 

nonlocal effect. As one can see, in absence of the added mass, 

the natural frequency decreases if the nonlocal coefficient 

increases, whereas if one considers the added mass, the 

natural frequency increases when the nonlocal effect 

increases. 

E. Influence of nonlocal parameter, with different mass 

additions and with various boundary conditions on the 

natural frequency of a SWCNT. 

Let us considers a single-walled carbon nanotube with 

various boundary conditions and with different added masses 

distributed along the length of nanotube. For all subsequent 

examples, the same material and geometrical data, given in 

Table 3, are assumed and the first three natural frequency 

values have been calculated, putting the small-scale 

parameter equal to =[0,0.1,0.2,0.3,0.4,0.5].  

 

a) Considering a clamped-free SWCNT with four added 

mass, the first numerical example is performed. The added 

mass are located at different abscissae of the nanotube: M1 = 

50 fg at L1 = 0.25 L, M2 = 40 fg at L2 = 0.5 L, M3 = 30 fg at L3 

= 0.75 L and M4 = 20 fg at L4 = L, respectively. In Table 9 the 

natural frequency values are reported.  

 

 f1 f2 f3 

0 141502.03 782366.97 2089881.15 

0.1 141522.56 781216.34 2079450.05 

0.2 141575.30 777797.12 2049031.96 

0.3 141667.04 772172.21 2001084.50 

0.4 141796.24 764456.96 1939129.74 

0.5 141963.51 754798.11 1867144.09 

Table 9 – Clamped-free SWCNT with four masses: (0.25 L , 50), 

(0.5 L , 40), (0.75 L , 30), (L , 20). 

The results show that the first natural frequency value 

increases while the second and third natural frequency values 

decrease when the non-dimensional nonlocal effect parameter 

increases. 

 

b) In this case, a simply-supported SWCNT with three added 

masses is considered. The added mass are located at different 

point of length of the nanotube: M1 = 50 fg at L1 = 0.25 L, M2 

= 40 fg at L2 = 0.5 L and M3 = 30 fg at L3 = 0.75 L, 

respectively. In Table 10 the natural frequency values are 

listed.  

 

 f1 f2 f3 

0 387444.07 1559037.98 3346383.90 

0.1 386947.34 1551205.66 3313911.17 

0.2 385501.47 1528379.19 3221593.31 

0.3 383112.53 1492441.08 3082705.64 

0.4 379840.62 1446074.07 2914140.11 

0.5 375754.37 1392276.99 2731871.46 

Table 10 – Simply-supported SWCNT with three added masses:  

(0.25 L , 50), (0.5 L , 40), (0.75 L , 30). 
 

c) Let us consider a clamped-simply supported SWCNT with 

three added masses which are located at different point of 

length of the nanotube: M1 = 50 fg at L1 = 0.25 L, M2 = 40 fg 
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at L2 = 0.5 L and M3 = 30 fg at L3 = 0.75 L, respectively. In 

Table 11 the natural frequency values are reported: 

 

 f1 f2 f3 

0 625170.90 1949149.37 3569855.07 

0.1 624204.50 1938787.79 3537741.30 

0.2 621333.54 1908620.04 3446344.19 

0.3 616628.11 1861214.85 3308560.05 

0.4 610210.78 1800226.62 3140771.74 

0.5 602235.81 1729737.23 2958473.63 

Table 11 – Clamped-simply supported SWCNT with three 

added masses: (0.25 L , 50), (0.5 L , 40), (0.75 L , 30). 
 

d) Let us consider a clamped-clamped SWCNT with three 

added masses: M1 = 50 fg at L1 = 0.25 L, M2 = 40 fg at L2 = 0.5 

L and M3 = 30 fg at L3 = 0.75 L, respectively. In Table 12 the 

natural frequency values are listed: 
 

 f1 f2 f3 

0 875152.01 2336526.54 3968107.05 

0.1 873794.36 2324304.83 3932606.76 

0.2 869757.50 2288696.47 3831553.57 

0.3 863145.54 2232631.64 3679180.88 

0.4 854128.34 2160306.80 3493590.45 

0.5 842924.27 2076436.50 3291943.24 

Table 12 – Clamped-clamped SWCNT with three added masses: 

(0.25 L , 50), (0.5 L , 40), (0.75 L , 30). 
 

e) In Table 13 the natural frequency values of a free SWCNT 

at the ends, with intermediate constraints, located at 0.25 L 

and 0.75 L, and three added masses: M1 = 20 fg at L1 = 0, M2 

= 50 fg at L2 = 0.5 L and M3 = 20 fg at L3 = L, respectively, 

have been obtained. 

 
 

 f1 f2 f3 

0 706641.32 1095322.11 2292122.60 

0.1 706407.61 1096077.35 2285430.29 

0.2 706158.07 1098722.93 2266027.40 

0.3 709305.71 1106177.88 2236032.58 

0.4 703253.33 1108098.86 2197106.04 

0.5 696274.05 1111490.78 2153108.21 

Table 13 – Free-supported at 0.25 L, supported at 0.75 L and 

free at L, with three added masses: (0. L , 20), (0.5 L , 50), (1 L , 

20). 
 

f) Let us consider a pinned SWCNT at the left, two supports at 

0.5 L and L and two added masses: M1 = 50 fg at L1 = 0.25 L 

and M2 = 50 fg at L2 = 0.75 L respectively. In Table 14 the 

natural frequency are listed. 

 

 f1 f2 f3 

0 760458.36 1843525.70 1582691.17 

0.1 779002.65 1837874.01 1316227.25 

0.2 753393.85 1813603.17 9406144.55 

0.3 751788.24 1778723.21 7003529.11 

0.4 736167.08 1731610.48 5498307.41 

0.5 719310.86 1675970.77 4508276.84 

Table 14 – Pinned-supported SWCNT at the left, two supports 

at 0.5 L and L, with two added masses at (0.25 L , 50), (0.75 L , 

50). 

 

g) Let us consider a nanotube clamped at left and with a 

support at 0.5 L, with non-dimensional stiffness coefficient 
3

hv

T

k L
K 1

EI
  , a support at L, with non-dimensional 

stiffness coefficient KTR = 10, and with two added masses: M1 

= 50 fg at L1 = 0.25 L and M2 = 50 fg at L2 = 0.75 L 

respectively. In Table 15 the natural frequency are listed. 

 

 f1 f2 f3 

0 354221.52 1555751.53 7655760.22 

0.1 354145.59 1549634.82 7432602.14 

0.2 353910.62 1531604.38 6626713.55 

0.3 353524.41 1502557.89 5488324.91 

0.4 352988.59 1463880.86 4513625.17 

0.5 352307.88 1417288.43 3789187.79 

Table 15 - Nanotube clamped at the left and with a support at 

0.5 L, with non-dimensional stiffness coefficient KT = 1, a 

support at L, with non-dimensional stiffness coefficient KTR = 

10, and with two added masses at (0.25 L , 50), (0.75 L , 50). 

The Tables 9-15 give the three natural frequency values. The 

results show that the natural frequency decrease when the 

nonlocal effect increases. 

VII. CONCLUSION 

The free vibration frequencies of a SWCNT, bounded at 

the ends, with translational and elastic constraints, and 

attached masses, have been investigated by using the Cell 

Discretization Method (CDM) and employing the non-local 

Euler-Bernoulli beam theory. The system, under 

consideration, has been modelled as a set of rigid bars linked 

together by elastic cells, where masses and stiffnesses are 

supposed to be concentrated. Several numerical examples 

have been treated in detail, comparing exact method and the 

proposed approach which has excellent results. More 

particularly, emphasis has been given to the influence of the 

small-scale parameter, of the added mass, of the various 

boundary conditions on the free vibration frequency 

behaviour of single-walled carbon nanotube. 

The proposed method leads to the following 

considerations: 

-    The clamped free nanotube represents a peculiar 

numerical case because it is the single numerical example 

in which the natural frequency increases when the 

nonlocal effect increases; 

-    The natural frequency decreases when the added mass 

value increases; 

-    A lot of the results listed in the Tables can be employed to 

know the relative frequency shift values. 
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