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   Abstract- This paper deals with the study of temperature 

distribution, stresses and deflections of a thin circular plate 

clamped with ring producing small deflection subjected to 

partially heat distribution heat supply. Values of the radial 

and axial stress functions have been obtained on the surface 

of a circular plate. The results have been compared with the 

previous analysis known to the author and found in agreement 

with it. 
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I.  INTRODUCTION 

Roy Choudhari [6] successfully investigated the quasi-

static thermal stresses in thin circular plate due to 

transient temperature applied along the circumference of 

a circle over the upper face. Nowacki [2] determined the 

quasi-static thermal stresses in a thick circular plate due 

to a temperature field. Noda et. al. [1] has considered a 

circular plate and discussed the transient thermo elastic-

plastic bending problem, making use of the strain 

increment theorem. Deshmukh et. al. [5] has succeeded in 

determining the thermal deflection at the center over a 

circular plate applying finite Hankel and Fourier 

transform using dirichlet type of boundary conditions. 

The earliest work on the problem of the clamped circular 

plate over a thick disc known to author is that by 

Khobragade et. al. [4].  

Here an attempt is made to determine the temperature 

distribution, radial and axial stress functions of a round 

plate, while deflection function is analyzed at the center 

of the clamped round plate by ring with the stated 

boundary conditions subjected to known partially heat 

supply by using Integral transform techniques.  

 

II. FORMULATION OF THE PROBLEM: 

GOVERNING EQUATION 

Consider a round plate of small thickness h  occupying 

the space :),,{( 3RzyxD   

,)(0 2/122 ayx  }0 hz   and for small thickness 

in a plane state of stress, the differential equation 

governing the displacement function ),,( tzr , where 

2/122 )( yxr  , for the heating as [3] 
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where ν  and  ta  are  the Poisson's ratio and the linear 

coefficient of thermal expansion of the material of the 

disc respectively and ),,( tzrT is the heating temperature 

of the disc at time t  satisfying the differential equation 
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Where cρKκ /  is the thermal diffusivity of the 

material of the disc, K  is the conductivity of the 

medium, c  is its specific heat  and ρ  is its calorific 

capacity (which is assumed to be constant), subject to the 

initial and boundary conditions  

0)0,0,,( 1 kTM t   for all  ar 0  , hz 0       

                                                                        (4) 

),()/(),0,,( 01 tzfQakTMr   for all  hz 0  ,    

                                                         0t      (5) 

),()0,1,0,( 1 trFTM z  , for all  ar 0  ,   

                                                        0t       (6) 

 

),(),,0,( 22 trFhkTM z        for all  ar 0  ,  

                                                    0t          (7) 

being: 

sfkfkskkfM   )ˆ(),,,( 2121  

where the prime ( ^ ) denotes differentiation with respect 

to  , 0Q  is the heat flux, radiation constants are 1k  and 

2k  on the curved surfaces of the plate respectively. For 

convenience we consider 121  kk . The functions 

),(1 trF  and ),(2 trF  are known constants and they are 

set to be zero here as in other literatures [2, 6, 8] so as to 

obtain considerable mathematical simplicities. 

The stress distribution components rr  and   of the 

plate are given by [5 ] 
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where    is the Lame's constants, while each of the 

stress functions rz , zz   and z   are zero within the 

disc in the plane state of stress.  
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Further a ring of negligible thickness is clamped on the 

curved surface of the plate as shown in Figure 1. The 

differential equation satisfied by the transverse deflection 

of the plate center surface ),( tr  for heating processes 

subjected to partial heat supply is given by [3] 
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where the prime (´) denotes differentiation with respect to 

r , ),( trMT  is the thermal moment of the plate,   is 

Poisson’s ratio of the plate material, D  is flexural 

rigidity of the plate denoted by 
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with thermal moment defined as 


h

T dztzrTzEtrM
0

),,(),(                             (14) 

Thus, the equations (1) to (14) constitute the 

mathematical formulation of the problem under 

consideration. 

 

III. SOLUTION OF THE HEAT CONDUCTION 

EQUATION 

Determination of the temperature distribution ),,( tzrT : 

Applying finite Fourier cosine transform [7] to the 

equations (3), (4) and (5) over the variable r  with 

responds to the boundary conditions (6)  and taking the 

Laplace transform [7], one obtains 
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where )/(/ 2222  shmq   with constants complied 

with boundary condition (5) taking assumption that as 

0r , )(0 qrK , but the physical consideration of 

the problem remains finite; therefore one of the constant 

is considered as zero. Applying the inversion theorems of 

transform [7] and inverse Laplace transform by means of 

complex contour integration and the residue theorem, one 

obtains the expressions of the temperature distribution 

),,( tzrT  as 
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where Cf  denotes the Fourier cosine transform of f , m  

is the Fourier cosine transform parameter, s  is a Laplace 

transform parameter and n  is the n
th

  positive root of 

the transcendental equation 0)(0 aJ  . 

 
Determination of displacement and stress function 
 
Substituting the value of ),,( tzrT  from equation (15) in 

equation (1) and using the well known standard result 
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one obtains the thermo elastic displacement function as 
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Substituting the value of equation (18) in equations (8) 

and (9) and using the well known standard results 
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one obtains the expression of the stress functions as 
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Determination of transverse deflection 
 
In solving equations (10) for a round plate clamped with 

ring of negligible thickness on the curved surface, we 

assume the unknown deflection ),( tr  for the center of 

the plate satisfying equation (10) as 
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Substituting equation (15) in resultant thermal momentum 

defined in (14), one obtains  
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Substituting equation (23) and (24) in equation (10), 

)(tCmn is obtained as 
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Finally in order to obtain the required thermal 

deflections ),( tr , we substitute the )(tCmn  in equation 

(10) as 
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IV. SPECIAL CASE 
 
Set  

ht ezhetzf   )2/()1(),( 2                           (27) 

Applying finite Fourier cosine to the equation (27) one 

obtains 
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Using equation (28) in the equations (15), (18), (21), (22) 

and (23), one obtains 
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V.  CONVERGENCE OF THE SERIES SOLUTION 
 

In order for the solution to be meaningful the series 

expressed in equations (15) should converge for all 

bra   and hz 0 , and we should further 

investigate the conditions which has to be imposed on the 

functions ),( tzf  so that the convergence of the series 

expansion for ),,( tzrT  is valid. The temperature 

equations (15) can be expressed as 
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We impose conditions so that both 
),,( tzrT

 converge 

in some generalized sense to 
),( srg

 as 0t  in the 

transform domain. Taking into account of the asymptotic 

behaviors of transform as given in [7], it is observed that 

the series expansion for both 
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 will be 

convergent by one term approximation as 
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Here 
),( tmfC 

 in equation (28) can be chosen as one of 

the following functions or their combination involving 

addition or multiplication of constant, 
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)exp(kt , or polynomials in t . Thus, ),,( tzrT  is 

convergent to a limit   hrbrtzrT  ,),,(  as convergence 

of a series for br   implies convergence for all br   

at any value of z .  

 

VI. NUMERICAL RESULTS, DISCUSSION AND 

REMARKS 
 

To interpret the numerical computation we consider 

material properties of low carbon steel, which can be used 

for medium duty shafts, studs, pins, distributor cams, cam 

shafts, and universal joints having mechanical and 

thermal properties 97.13  ,29.0  9.51  and 

7.14ta . With the general convention that the 

thicknesses of the thin round plate is taken   

(diameter 40/ ) as 1.0h , with radius 1a . In the 

foregoing analysis will be illustrated by the numerical 

results shown in Figure 2 to 12. Figure 2 depicts the 

distributions of the temperature increment ),,( tzrT  

verse radius and thickness at a fixed value of time 2t . 

It shows that heat gain follows increasing trend of 

sinusoidal nature with increase of radius up to the outer 

region of radiation flux. The physical meaning emphasis 

for this phenomenon is that there is increment in the rate 

of heat propagation with radius which leads to 

compressive radial stress at inner part and expand more 

on outer due to partially distributed annular heat supply. 

Figure 2 depicts the displacement function and it is 

noteworthy that it is in agreement with the boundary 

condition (2) and attains zero at the outer edge. Figure 3 

and 4 shows the distributions of the radial and axial 

thermal stresses at fixed value of time. Figure 10 shows 

the deflection trend with same parameter aforementioned. 

All other figures are showing similar character & self-

explanatory. 

 

VII. CONCLUSION 
 

In this problem, we modify the conceptual ideal 

proposed by Noda [6] for circular plate and investigated 

further for the temperature distributions, displacement, 

stress function and deflection. As a special case 

mathematical model is constructed and performed 

numerically. We develop the analysis for the temperature 

field for heating processes by introducing the temperature 

function satisfying all boundaries conditions of radiations 

type. The series solutions converge provided we take 

sufficient number of terms in the series. Since the 

thickness of round plate is very small, the series solution 

given here will be definitely convergent. Assigning 

suitable values to the parameters and functions in the 

series expressions can derive any particular case of usage. 

The temperature, displacement and thermal stresses that 

are obtained can be applied to the design of useful 

structures or machines in engineering applications. 
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Fig (1).The configuration of thin round plate clamped with 

ring 
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Fig (2) .Distribution of the temp. versus  

r and z-axis for t=0.2  
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Fig (3).Distribution of the displacement function versus r 

and z-axis for t=0.2  
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Fig (4).Distribution of the radial stress function versus r and 

z-axis for t=0.2  
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Fig (5).Distribution of the axial stress function versus r and 

z-axis for t=0.2 
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Fig (6).Distribution of the temperature versus r and t for 

z=0.05 
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Fig (7).Distribution of the displacement function versus r 

and t for z=0. 05 
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Fig(8).Distribution of the radial stress function versus r and 

t for z=0. 05 
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Fig (9).Distribution of the axial stress function versus r and t 

for z=0.05 
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Fig (10).Deflection function versus r and t  for z=0.05 
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Fig (11), Distribution of the temperature versus t and z-axis 

for r=0.75 
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Fig (12).Distribution of the axial stress 

Function versus t and z-axis for r=0.75 
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