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 Abstract— In this paper, an informax based source deflation 

algorithm of the loudspeaker (far-end) signal for acoustic echo 

cancellation is introduced. The aim is to continually model the 

loudspeaker-environment-enclosure filter even under double-talk 

and noisy conditions, something the current methods fail to do. 

The deflation filter is learned using the informax principle where 

a prior knowledge about the near-end signal's approximate 

probability density function is required for optimal filter 

convergence. Simulation results are used to illustrate the 

performance of the algorithm under double-talk conditions, as 

well as simulation comparisons to the normalized 

least-mean-square algorithm for echo cancellation under varying 

noise conditions with no double-talk 

 
Index Terms—acoustic echo cancellation, double talk 

detection, informax principle.  

I. INTRODUCTION 

 The current acoustic echo cancellation (AEC) algorithms 

mostly utilize adaptive filtering techniques optimized using 

the least mean square (LMS) algorithm and its variants 

[1-3].The loudspeaker signal  is filtered by the 

loudspeaker-environment-enclosure (LEM) filter  

resulting in the far-end signal  for 

 where  is the convolution operator. It is this 

signal that must be cancelled from the transmitted signal, so 

that it is only the near-end signal  that 

is played through the loudspeaker, be it for teleconferencing 

or public announcement systems, where  is the 

talker-environment-microphone (TEM) filter and is the 

talker signal, for . These two signals, along with 

room noise  are captured by the microphone such that 

the output is , for . 

With no observed near-end signal, an adaptive filter  is 

used to model the LEM filter, and then using the available 

loudspeaker signal, the far-end signal estimate 

  is obtained, for . The 

estimated signal is subtracted from the microphone signal 

resulting in the error signal , for the 

residue signal for Given 

minimal room noise, the adaptive filter can converge to the 

LEM filter resulting in effective echo cancellation. However, 

this echo cancellation process fails when then near-end signal 

is observed (double-talk) as the adaptive filter diverges from 

the desired LEM filter, and the same thing occurs under 

excessive noise conditions.  

To avoid the problem of filter divergence due to the 

near-end  signal or excessive noise, double-talk-detection 

(DTD) algorithms such as those based on cross-correlation 

methods [4,5] and other variants, are used to detect the 

presence of the near end signal as well as excessive noise, to 

freeze the LEM filter modeling process. 

 

 
Fig. 1. An adaptive filter is used to model the LEM enclosure 

filter, then using the available loudspeaker signal an estimate 

for the far-end signal is subtracted from the microphone signal 

given no double-talk-detection 

The frozen coefficients of the adaptive filter are 

continually used to estimate the far-end signal, and given the 

LEM path does not change much during these periods, the 

echo signal can still be cancelled. The system is illustrated in 

Fig. 1. However, the reality is that the near-end signal is 

frequently observed, especially in public announcement 

systems, and in a continually changing LEM enclosure. It is 

for this reason that adaptive filtering techniques often fail in 

echo cancellation due to the excess mean square error of the 

adaptation algorithm. In this paper, we propose the use of a 

source deflation or cancellation algorithm where the deflation 

filter is directly learned using the informax principle to cancel 

the echo signal  By employing this approach, the 

far-end (or echo) signal can still be cancelled even under 

double-talk conditions. The main idea is to address the 

limitations of conventional echo cancellers when there is 

double-talk and excessive noise. This paper is structured as 

follows: In Section II, we introduce the proposed source 

deflation algorithm. The simulation results are presented in 

Section III. Discussion and summary remarks are in Section 

IV. 

II. THE PROPOSED AEC ALGORITHM 

The proposed AEC algorithm is illustrated in Fig. 2, where 

the inputs to the source deflation algorithm are the 

microphone signal  and the loudspeaker signal 

 for . Besides echo suppression, it 

is further desired that the near-end signal remain unfiltered so 

that the natural effects of the room are preserved in the 

communication signal. 
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Fig. 2. Using the available loudspeaker signal, a deflation 

filter is used to suppress the far-end signal from the microphone 

signal even under doubletalk and noisy conditions. The 

processed signal is an estimate of the near-end signal. 

A. Problem Formulation 

Given the microphone signal 

 and the loudspeaker 

signal , we have the mixing model.  

 

 
 

for all , where  is the  coefficient of 

the Dirac impulse response, assuming causal room impulse 

response (RIR) filters of length . The task is to find the 

loudspeaker signal deflation matrix ) such that 

 

 
 

for all . From the model we have 

, where it is known that  Therefore it is 

necessary that  and , for all 

. The resulting signal after deflation is given by 

 where the goal is to end up 

with , the unfiltered near-end 

signal. This implies that = , and therefore we 

have 

 

     (1) 

 

for all . Based on (1) the task of finding a 

 deflation matrix has been reduced to learning an 

optimal vector  for all . It is 

interesting to note that (1) requires the estimation of the LEM 

enclosure filter just like the conventional LMS methods do, 

leading to subtraction of the estimated far-end signal from the 

observed microphone signal. In other words, 

 The 

advantage here is that it would be possible to suppress the 

echo even under double-talk conditions, which is the main 

aim of this paper. Clearly, it is not possible to use LMS 

variants as the presence of the near-end signal would lead to 

filter divergence. We propose the use of the informax 

principle to learn the optimal echo deflation vector  

for all . 

B. Learning the Echo Deflation Filter 

 
Fig. 3. The processed signal  is passed through a 

non-linear squashing function to give the output  which is 

used to optimize the deflation filter   Some knowledge of 

the density function of  is useful to set  as close as 

possible to its cumulative distribution. 

Fig. 3 illustrates the use of the information-maximization 

(informax) process to learn the optimal filter 

 for echo suppression, for all 

. A non-linear point-to-point squashing function 

 is used to give the signal  for all . 

From this, the probability distribution of  (the variable 

realized by samples of the signal  can be written as   

 

 
Which means that if the non-linear function  is 

chosen as the cumulative distribution of the variable  

(realized by samples of the signal ), then  reduces 

to a uniform density function. It is well known that the 

uniform density function has the most differential entropy 

(uncertainty associated with a variable) as all values are 

equally likely. Therefore, maximum information is 

transferred from the input to the output when  matches a 

uniform distribution, and it is this informax principle that we 

shall use to learn the optimal deflation filter , for all 

. For further reading on the informax principle, 

the reader is referred to [6]. 

It is desired that the output signal  thus some 

a prior knowledge about the density function of the near-end 

signal would serve well in determining the function  If 

 then the output signal  the desired 

near-end signal. In [6], it was observed that speech signals 

tend to have a leptokurtic density function which resembles 

the Laplacian or double exponential distribution. This lead to 

the use of  as the non-linear squashing 

function, a function we shall adopt in the derivations. 

Remark: In public announcement systems, the echo signal 

is the delayed near-end signal. This means that it is possible 
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to estimate the type of density function from the available 

loudspeaker signal  which can lead to more effective 

echo suppression. 

Using the deflation matrix  where 

, the 

processed signal can be written as 

    (2) 

for all .The differential entropy of the output 

 with respect to the loudspeaker signal for 

 is given by 

 
which can be expanded to 

 

 

where the loudspeaker signal  is chosen as it is the 

one directly processed by the filter of interest  for all 

, and  denotes mathematical expectation 

whereas the ratio  defines how the loudspeaker signal 

affects the output signal  for . Since the 

task is to find the optimal filter , for all , 

such that the amount of information transferred from the 

input to the output is maximal, the contrast function can be 

written as 

     (3) 

 

for all , with the term  left out 

because the deflation filter coefficients are not dependent on 

the observed signals. Using the chain rule 

 

 
 

From (2) then  and 

, for the non-linear squashing 

function  It follows that 

 For optimization of the 

contrast function given by (3) using the gradient ascent rule, 

the adaptation step for the first coefficient is such that  

 

, 

 

which evaluates to 

 

       (4) 

 

For  then following the same derivations the 

learning rule is 

 

       (5) 

 

III. RESULTS AND ANALYSIS 

The LEM and TEM impulse responses were generated 

using MATLAB for the length , and these are 

plotted in Fig.4. The two speech signals of length 

 samples used as the loudspeaker and talker 

signals as well as the resulting microphone output with 

addition of Gaussian noise for a signal to noise ratio (SNR) of 

 are illustrated in Fig.5.  

The learning rules (4) and (5) were used to learn the 

deflation filter coefficients for echo cancellation, after which 

the cross-correlation measure between the loudspeaker signal 

 and the output  for all , is used to 

illustrate the effectiveness of the proposed AEC algorithm. 

Low values of the cross-correlation indicate good 

separability as opposed to high values. The cross-correlation 

coefficient is given by 

 

,      (6) 

where  and  are the mean and standard deviation of the 

loudspeaker signal  with  and  as the mean and 

standard deviation of the processed signal  for all 

, After deflation, (6) was used to measure the 

residual echo, for which the correlation coefficient was 

. The results are illustrated in Fig. 6. 

There are other possibly more accurate measures for 

determining the deflation of the loudspeaker signal in the 

signal  such as measuring the mutual information via 

spacing estimates of entropy [7], but it is the computational 

simplicity of (6) that makes it attractive as well as its 

experimental success as a measure for DTD applications, 

which is essentially what we are doing. For example, no 

double-talk implies successful source deflation and this is 

reflected by a low correlation value. 

 
Fig. 4. Plots for the LEM and TEM impulse responses for 

filter length K = 1024. 
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Fig.5. The loudspeaker (top) and talker (middle) signals 

along with Gaussian noise are used to give the microphone 

(bottom) signal with a SNR=30dB. 

The proposed algorithm is further simulated in comparison 

with the normalized least-mean-square (NLMS) algorithm 

under varying noisy conditions, where the echo residue is 

again reflected by the values of (6). The results are illustrated 

in Fig. 7, where the informax based deflation algorithm 

achieves better echo cancellation results than the NLMS 

method. This is because the conventional approach adapts the 

echo cancellation filter via the minimization of the error 

signal, which under noisy conditions is 

 for all The 

objective of this approach is to match  to  and this 

is not possible due to additive noise, much in the same way 

that the near-end signal causes the adaptive filter to diverge. 

The deflation algorithm works by suppressing the 

loudspeaker signal from the microphone signal, which is still 

possible in the presence of noise and therefore the processed 

signal is usually echo free. 

 
Fig. 6. The transmitted signal resembles the talker signal 

where the correlation between the loudspeaker and transmitted 

signal is 0.08. 

 
Fig. 7. Comparison between the source deflation algorithm 

and NLMS approaches: In general, the correlation between the 

loudspeaker and transmitted signals is less for the proposed 

method compared with the NLMS method. This is because noise 

causes filter divergence with the NMLS approach. 

 

IV. CONCLUSION 

A new algorithm for AEC via source deflation of the 

loudspeaker signal from the microphone signal has been 

introduced. The optimal deflation filter, which is the negated 

LEM enclosure filter, is learned via maximization of the 

information transferred from the observed loudspeaker signal 

to the processed signal for communication. The amount of 

information transferred is measured by means of differential 

entropy, where it is known that the uniform density function 

has the most entropy as all values are equally likely. Thus, 

with a prior knowledge about the near-end's probability 

density function, it is possible to cancel the loudspeaker 

signal where optimality coincides with maximal differential 

entropy of the non-linearly squashed output signal. 
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