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Abstract: In this paper, we consider the transient dynamic 

problem of elasticity for. Problem of harmonic oscillations 

occupy the dynamic theory of elasticity is much more modest 

place in comparison with non-stationary problems. If we 

consider that in most cases, the sources of excitation wave 

propagation in elastic media are shock or explosive nature, it 

becomes clear that in practical applications of dynamic 

elasticity theory must deal usually with non-stationary 

problems. 

 

Keywords: on-stationary wave, cylinder, impact axial 

force, Lame equation. 

 

I. INTRODUCTION 

Consider the problem of wave propagation in a semi-

infinite circular cylinder radius a  under impact axial 

forces applied on the face area of the cylinder. 

 

II. FORMULATION AND SOLUTION OF THE 

PROBLEM 

In a cylindrical coordinate system associated with the 

end of the cylinder zz ,, , the solution of the ax 

symmetric problem is related to the following system: 
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Here ru  zu and in the radial and axial movement of the 

particle   density.  

Join this system the initial and boundary conditions; they 

are as follows: 
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0 rzrr    ,     zar 0;                               

(5) 

(1) and (2) leads to the equation system ax 

symmetric: 
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Using sin and cos Fourier, z  coordinate functions, 

respectively, ru
  

and zu  then the t- Laplace transform 

in system (1) - (5) can be reduced to: 
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Here p and q respectively parameters Laplace and Fourier 

transforms. 

Choose two new functions by the formulas: 
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System (6) after applying the changes (7), takes the 

simple form: 
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Here 1B  and 2B - modified Bessel operators (zero 

indexes) 
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The second equation of system (8) is also a modified 

Bessel equation in relation to the function. 
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Bounded ar 0  solution of this equation in a 

function: 

 .
02

)(
0)(

002
const

q

p
qrIDB  






                   (9) 

Substituting in the first equation (8) we obtain: 
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Solutions of equations (9) and (10) the following: 
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due to the substitution (7) 

the displacement field generated by members containing 
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In transformations, these conditions take the form: 
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Taking into account (7) and (11) the last relations into a 

system of two linear algebraic equations for 

determining 0A  and 0B : 

 

 
 












22
1

)(
0)

2
(''

0
)

2
('

0
1

[)]
2

('
0

)
2

(''
0

2
0

)
1

(
0

2)
1

('
0

)
1

(''
0

2
0
























v

pfq
avIavI

a
qavqI

a
avqIB

avIqavI
a

avIA

      (12) 

                 

.0)
2

('''
0

)
2

(''
0

1
)

2
('

0
1

)
2

('
0

2
0

),('
00

2  







avIavI

a
avI

a
avIqBavqIA

Determinant of this system is the 


















































)
2

(
0

)
1

(
121

24)
2

(
1

)
1

(
1

1
2
2

2
2)

1
(

0
)

2
(

1
)2

2
2(22

2
2

2
12

12
2

2
1

2

avIavIvvqavIavI

a

v

c

p
avIavIvqq

c

c
v

c

c
vF

  (13) 

The system (12) has the following solution: 
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Where and are given by formulas (14). 
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Where and are given by formulas (14). Should now 

return to the actual coordinates, which requires reproduce 

inverse transformations (15). Judge by the expressions 

(14) and (13), this operation is fraught with difficult, and 

to this day is known only to the asymptotic solution of the 

problem with t . 

It can be shown that the F  function is defined by (13) 

and included in the denominator in (14), q has no real 

zeros in the complex plane is the imaginary axis. 

0Re p  On the imaginary ikp   axis is replaced 

by the equation. 
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finding these roots, we apply the method developed in [5] 

for solving the transient dynamics of a rectangular timber, 
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Expression in the square brackets of formula (18) as can 

be seen 0Re p , is a geomorphic function in the half 

disappearing into infinity at  nRp , as well as 

having simple poles at the axis 0Re p . Therefore, 

you can apply a second decomposition theorem [1]. 

Whereby 



k
P

pt
epf

k
P

restf )(*)(  

)(()(*
0

0

tfLpf 

 

and wherein it has the above 

properties. 

Please note that for small values in the t  expression (18) 

is dominated by the first term: 






















1
2
1

22
1

2

00

0

0

0 c

z
tH

c
LF

v 






                                  

(19) 

Because another member of the roughly estimated t  by 

two degrees to a smaller value, 

)()(2 tOtOtW 


 

for small values t . 

Now give the inverse functions of images included in the 

solutions (18), in their derivation was used [1]. 

;
0

2

2
22

2

2
2

2
sin

2

2
2

22)
2

sin(
2)

2
(

0

)
2

(
1

3
2

2
2

2

)1 














 

































k

a

kq
k

t
a

kqc
a

kq

a

c
tqcac

L

avI

avI

v

vq






 2) 











































0

2

2
2

2

2
2sin

)(
1

0
2)sin(

)(
0

)(
0

2

1

k

a

kq
k

t
a

kq
i

c

k
J

a

r
k

J

t
i

qc
q
i

c
L

a
i

vI

r
i

vI

i
v 









 

 

3) 

































0

2

2
2

2

2
2

1
sin

1
2

)
1

(
0

)
1

(
1

1

1

k

a

kq

t
a

kqc

a

c
L

avI

avI

v




 

4) )
2

(
02

2

1
qtcJc

v 


  

 

5) )
2

(
1)2/3(

2
2

3
2

1
qtcI

q

tc

v 





 

Here 
k

  the zeros )(
0

xJ  and 

.2,1;2
2

2
 iq

i
c

p
i

v  

Solution (19) is a flat longitudinal wave that starts with 

the end site and propagating with the speed. 
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