Experimental Investigations on a four stoke Diesel engine operated by Cotton seed biodiesel blended with Diesel

Dr V. Naga Prasad Naidu, Prof. V. Pandu Rangadu
Principal, Intellectual Institute of Technology, Anantapuramu, A.P.
Prof. in Mech Engg., JNTUCEA, Ananthapuramu, A.P, India

I. INTRODUCTION

Conventional energy sources such as oil, coal and natural gas has limited reserves and other side industrialization and motorization of the world has led to a steep rise in the demand for petroleum products. If this situation continues there is every chance for the scarcity of petroleum products. A major solution to reduce this problem is to search for an alternative fuels. Vegetable oils can be used as an alternative to the diesel fuel, since they are renewable and can be produced in rural areas [1]. The inventor of diesel engine Rudolf diesel predicted that the plant based oils are widely used to operate diesel engine. The bio diesel has great potentials as alternative to diesel fuel [2]. But use of pure vegetable oil can cause numerous engine related problem such as injector chocking, piston deposit formation and piston ring sticking due to higher viscosity and low volatility [3]. An effective method of using vegetable oils in diesel engine is by modifying the vegetable oils into its monoesters by transestrification [4]. Transesterification of bio diesel provides a significant reduction [5] in viscosity, thereby enhancing their physical and chemical properties and improve the engine performance. The present study aims to investigate the use of Cotton seed oil blended with diesel as an alternate fuel for compression ignition engine.

II. TECHNICAL SPECIFICATIONS OF THE ENGINE

In this work experiments were conducted on 4 strokes, single cylinder, C.I engine (Kirloskar Oil Engineers Ltd., India) of maximum power-3.68 KW with AVL smoke meter and Delta 1600 S gas analyser.

III. MATERIAL & METHODS

In the present work engine tests were conducted with cotton seed Bio Diesel blended with Diesel (B05, B10, B15, B20, and B25 in comparison to diesel) to evaluate performance and emission characteristics. Cottonseed oil is extracted from cottonseeds. Cotton has long been known as nature's unique food and fiber plant. It produces both food for man and feed for animals in addition to a highly versatile fiber for clothing, home furnishings and industrial uses. Cottonseed oil has a ratio of 2: 1 of poly n saturated to saturated fatty acids and generally consists of 65-70% unsaturated fatty acids including 18-24% monounsaturated (oleic) and 42-52% polyunsaturated (linoleic) and 26-35% saturated (palmitic and stearic)⁵. The various properties of the above bio diesels⁶ are presented in table 1.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Cotton seed Oil</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m3)</td>
<td>874</td>
<td>830</td>
</tr>
<tr>
<td>Calorific Value (kJ/Kg)</td>
<td>40610</td>
<td>43000</td>
</tr>
<tr>
<td>Viscosity @400°C(St)</td>
<td>4</td>
<td>2.75</td>
</tr>
<tr>
<td>Cetane Number</td>
<td>51.2-55</td>
<td>45</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>70-110</td>
<td>74</td>
</tr>
</tbody>
</table>

IV. RESULTS AND DISCUSSIONS

A. Brake thermal Efficiency

The Figure 1 shows the variation of brake thermal efficiency with break power output. In general the thermal efficiency depends on the combustion process which is a complex phenomenon that is influenced by several factors such as design of combustion chamber, type of injection
nozzle, injection pressure, spray characteristics and fuel characteristics such as cetane number, volatility, viscosity, homogeneous mixture formation, latent heat of vaporization, calorific value etc. It is evident that diesel fuel has the higher brake thermal efficiency compared to Cotton seed biodiesel blends. The diesel fuel has the highest thermal efficiency because of its calorific value and viscosity as compared with Cotton seed oil. With the higher calorific value the amount of heat produced in the combustion chamber is more, further the combustion is complete and produced higher temperatures. The efficiency of diesel is 29.18%, B20 blend is 28.75 and B25 blend 27.47.

C. Exhaust Gas Temperature

The Figure 3 shows the variation of Exhaust gas temperature with break power output.

![Fig 3 Variation of Exhaust gas temperatures with power output](image)

The exhaust gas temperature was found to increase with increase in both concentration of biodiesel in the blend and engine load. The exhaust gas temperature rises from 110°C to 350°C from no load to full load respectively for various blends. The increase in EGT with engine load is due to the fact that a higher amount of fuel is required in the engine to generate extra power needed to take up conditional loading. Exhaust gas temperature for B-25 is highest. For the diesel fuel the exhaust gas temperature is lowest among all biodiesel blends. The exhaust gas temperature for the diesel at the rated load is 320°C, for B20 is 332°C. Though the viscosity for the Cotton seed oil is higher it is compensated by the calorific value of the fuels.

D. Smoke Density

The variation of the smoke densities with power output is shown in Figure 4. The smoke density increases with the increase of engine load. This is compensated up to certain extent due to the absence of aromatics and presence of inherent oxygen molecules in the bio diesel. These oxygen particles helps to promote stable and complete combustion by delivering oxygen to the combustion zone of burning fuel by reducing locally rich region and limit primary smoke formation and lower smoke emissions. For all loads the smoke density of the biodiesel blends were always higher than that of diesel fuel. The smoke density increases due to insufficient combustion and higher ignition delay. The biodiesel blend has high viscosity, larger fuel droplet sizes and decrease in fuel air mixing rate. These are the factors involved to increase the smoke density of biodiesel blends. The fuel blend B25 gives high smoke emission than all the other used fuels.
E. Hydrocarbon emissions

The variation of hydrocarbon emissions with break power is shown in Figure 5. The HC emissions depend upon mixture strength i.e. oxygen quantity and fuel viscosity in turn atomization. The HC emissions increase with increasing load and decrease with increase in amount of bio diesel in blend. Lower heating value leads to the injection of higher quantities of fuel for the same load condition. More the amount bio diesel leads to more viscosity. Viscosity effect, in turn atomization, is more predominant than the oxygen availability, either inherent in fuel or present in the charge. When compared to diesel, the oxygen availability in the bio diesels is more. So the emissions are less than diesel. It is observed from the figure that the decrease in hydro carbon emissions with increase in Cotton seed biodiesel in the blend as compared with diesel fuel.

F. Carbon Monoxide Emissions (CO emissions)

The variation of carbon monoxide emissions for with brake power is illustrated in Figure 6.

It has been observed that the CO emissions are increased with increase in engine load and decrease with the increase in proportion of biodiesel in the blends. The lower CO emission of biodiesel compared to diesel fuel is due to the presence of oxygen in biodiesel which helps in complete oxidation of fuel.

G. Nitrogen oxide Emissions

The variation of Nitrogen oxide emissions oils is illustrated in Figure 7. The NOx emissions are higher for blend as compared with diesel fuel. The increase of NOx in the emissions may be associated with the oxygen content of the biodiesel, since the biodiesel fuel provided additional oxygen for NOx formation. Thus one of the main reasons for the formation of NOx is the higher availability of oxygen in the combustion chamber.

V. CONCLUSIONS

The following conclusions are drawn based on the experimental results of the above work:

- The brake thermal efficiency of the engine depends majorly on the heating value and viscosity. The brake thermal efficiency of B20 is nearer to the diesel fuel.
- With the higher combustion rate, the temperature inside the engine increases and in turn in the exhaust temperature increases.
The Hydrocarbon emissions of Cotton seed oil biodiesel blends are less than diesel fuel

- The CO emissions are lower for bio diesel blends due to presence of oxygen.
- The NOx emissions increase with increase in concentration biodiesel in blend due to high temperature.

Finally it is concluded that the blend of cotton seed bio diesel-- B20 is the optimum blend for Diesel engines for better performance and emissions. The Cotton seed oil biodiesel can be used as alternative to diesel

VI. ACKNOWLEDGMENT

Authors thank authorities of Intellectual Institute of Technology and Intell Engineering College Anantapuramu, AP, India for providing facilities for carrying out research work.

REFERENCES

AUTHOR’S PROFILE

Name: Dr. V. NAGA PRASAD NAIDU
Date of Birth : 01-07-1973 Age : 40years
Official Address : Principal, Intellectual Institute of Technology, Gotkur(v) Kuderu (M), Anantapuram(DT), AP,India.-51571.
Ph no: 08554201193, Cell: 9989988920.

Qualifications : B.E. (Mechanical) from University of Madras, Chennai T.N. Indian, M.Tech (Heat Power R & A/c) from J.N.T.University, Hyderabad, A.P. India, Ph.D., (Hybrid Composites) from Department of Polymer Science & Technology, S.K. University,Anantapur, A.P. India.

Membership of reputed Professional BODIES:
Life Member of Indian Society for Technical Education (I.S.T.E) – LM – 80189
Life Member of Institution of Engineers Indian
Member of International Association of Engineers-IAENG-139106

Research Work:
1) Worked on topic “Hybrid Composites” The nature of this work is to develop Hybrid composites by the use of both Natural and Synthetic fibre to improve mechanical properties and thermal properties and this work has attempted at Department of Polymer science and Technology, Sri Krishnadevaraya University, Anantapur, A.P.

2) Worked on topic “An experimental investigations on Four stroke Diesel Engine Bio Diesel”. Experiments were carried out on four stoke diesel engine with different Bio Diesels separately to evaluate its performance and emission characteristic. Published nearly 20 papers in various national/International conferences and journals