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Abstract:-The effect of black-body radiation and electron 

inertia on the Jeans instability of rotating and magnetized 

gaseous plasma of interstellar medium has been studied with 

the help of relevant MHD equations using normal mode 

analysis. Rotation is taken parallel and perpendicular to the 

magnetic field for both, the longitudinal and transverse modes 

of propagation. The jeans criterion of instability is modified to 

give the stabilizing effect of radiation pressure. The stabilizing 

effect of magnetic field is observed only of transverse mode of 

propagation where as finite election inertia destabilizing 

effect. The rotation stabilizes only along the magnetic field for 

transverse mode. The stabilizing effect of rotation is 

comparatively more effect. 
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I. INTRODUCTION 

The gravitational instability is one of the fundamental 

concepts of modern astrophysical hot plasma gas cloud 

and it is connected with the fragmentation of interstellar 

matter in regard to star formation. James Jeans [1] first 

studied this instability problem and suggested that an 

infinite homogeneous self-gravitating fluid is unstable for 

all wave number which is less than critical Jeans wave 

number. In terms of the wave length of a fluctuation, 

Jeans criterion says that   should be greater than a 

critical value 2

j

C

G







 which is named the Jeans 

length. In this formula G is the gravitational constant,   

is the unperturbed matter density and BK
C

m


 is the 

sound speed for adiabatic perturbation. BK
 

is the 

Boltzmann’s constant, T is the physical temperature and 

m is the mass of the particle. In this connection Jeans[2] 

discussed the conditions under which a fluid becomes 

gravitational unstable under the action of its own gravity. 

Nowadays, for any relevant length scales in the Universe 

[Stars, galaxies, asteroid, planetary rings, clusters, etc]; 

such as instability has been recognized as the key 

mechanism to explain the gravitational formation of 

structure and their evolution in the linear regime. The 

Jeans problem has been extensively investigated under 

varying assumptions. A comprehensive account of these 

investigations has been given by Chandra sekhar[3] in his 

monograph on hydrodynamic and hydro magnetic 

stability. The problem of an isothermal gas sphere 

subjected to external pressure has been studied by 

Ebert[4] and he found that disturbances of length scale 

approximately equal to the Jeans length based on the 

central density were unstable to gravitational collapse. 

Since 2
1

  j  and Jeans mass 2
1

3 
  jM ; 

this considerably reduced the minimum unstable mass 

and demonstrated that O star could form in the centre of 

an interstellar cloud. Hunter[5] studied the growth of 

perturbations in a gravitationally contracting isothermal 

gas cloud and he found that perturbations with initial 

scale of the order of or less than the Jeans length grew 

less rapidly relative to the back ground density than did 

perturbation of substantially larger dimension. In this 

connection, many investigators have discussed the Jeans 

instability of homogeneous plasma considering the effects 

of various parameters [6-13] In addition to these magnetic 

fields can provide pressure support and inhibit the 

contraction and fragmentation of interstellar clouds. The 

magnetic field interacts directly only with the ions, 

electrons and charged grains in the gas collision of the 

ions with the predominately neutral gas in clouds are 

responsible for the indirect coupling of the magnetic field 

to the bulk of the gas. Langer [14] demonstrated that the 

degree to which the magnetic pressure is important and 

depends upon the field strength and the fractional 

abundance. In the interstellar medium (ISM), a large 

amount of energy is injected by the stars, which leads to 

the formation of shock waves; but when these shock 

waves weaken, they become large amplitude hydro 

magnetic Alfven waves. In this connection many 

investigators have discussed the contribution of the 

magnetic field in the ISM [15-18]. In the interior of hot 

and large plasma clouds regions, where the temperature is 

rather high while the density is low, it is important to take 

into account the radiative processes. In the recent ISM 

observations, it has been established as a fact that the 

radiative processes plays an important role in the star 

formation and molecular cloud condensation process in 

connection with thermal instability. The ISM structure 
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shows that the radiative processes are the major cause for 

the condensation of large astrophysical compact objects. 

Taking the radiative processes in consideration, Vranjes 

and Cadez[19] and Vranjes[20] have investigated the 

influence of radiative processes on gravitational 

instability. Inutsuka et al.[21] have studied the 

propagation of shock waves into a warm neutral medium 

taking into account radiative heating and cooling, thermal 

conduction and viscosity terms. Thus the aim of the 

present paper is to study the effect of radiation pressure 

on the Jeans self-gravitational instability of a 

homogeneous hot plasma gas with finite election inertia 

and rotation. 

 

II. EQUATIONS OF THE PROBLEM 

The MHD equations of infinite, homogeneous, viscous, 

uniformly magnetized rotating plasma a cloud 

incorporating the radiative processes and finite electron 

inertia may be given as follows as: 
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Operator 
Dt

D is substantial derivative given by  








.v

tDt

D

        (6)

 

Where    ,,,,0,0,,,, TGHHp


 and 

 vx  ,0,


are denote the density, velocity, pressure 

gravitational potential magnetic field universal 

gravitational constant, temperature and kinetic viscosity 

and rotation respectively pe  is the electron plasma 

frequency. 

For an enclosure containing matter and radiation, 

Chandrasekhar(16) has defined   as The gas pressure  

b

b

34
1 1




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Pressure 
   
  bb

bb






1112

134
2

1




  (8)

                         

rg

g

pp

p
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
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The gas pressure RTpg  , the radiation pressure 

4

3

1
Tp Rr 

  

the total pressure sg ppp 
 

 

III. LINEARZIED PERTURBATION EQUATIONS 

In the unperturbed state the fluid is assumed to be at 

rest. The field variables in perturbed state may be taken 

as TThHpp   ,,,,,


. After 

linearization equation (1) to (5) become as 
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    is assumed to be constant, R denote gas constant and 

go

ro
p

P

P
R 

 
IV. DISPERSION RELATION 

Let us assume the perturbation of all the quantities very 

as  

exp.   tzKxKi zx 
        (15)

 

Where   is the growth rate of the perturbations and 

xK  and zK are the wave number of perturbation along 

the x-axis and z-axis respectively such that 
222 KKK zx 

                  (16)
 

 

Using equation (12) to (15) in Equation (10) and writing 

algebraic amplitude Equation of (10) and (11), we get  
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Where 



s the condensation of the medium is 

v
H

V ,
4

2
2


 is the Alfven velocity 

cRTc ,2  is velocity of sound 

 
GKCj 4222 

    
              (21)

 

 















2

22

1
pe

KC




    

    (22)

 

 

 

pR
A

41

1






     

    (23)

 

Now equations (17), (18), (19) and (20) written in the 

matrix form 
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The determinant of the matrix (24) gives the dispersion 

relation as taking is 
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V. DISCUSSION 

Equation (24) represents the general dispersion relation 

of an infinite homogeneous, viscous, magnetized rotating 

plasma cloud incorporating the radiative process. 

Equation (24) does not allow a positive real or a complex 

root whose real part is positive and so the system is 

stable. It follows that when 0222  AKCj  then one 

of the root of equation (24) is positive, that means 

instability occurs with condition. 

   

   p

j
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When jK  is Jeans wave number  
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Thus the condition of instability given by Jeans is 

modified by radiation. The radiation pressure stabilizes 

the system. The magnetic field and viscosity do not affect 

the condition of instability in this generalized case. For 

negligible radiation pressure 0pR  and 

r 1 the condition of instability reduces to the 

original Jeans expression. For gas pressure 

rg pp  ,the radiation pressure,
3

4
1  .  

The condition of instability becomes 

 
p

j

R

K
K





1
3

4

2

2

  (27) 

 

A.  Longitudinal Wave Propagation 

For longitudinal wave propagation KKZ   and 

0xK the Equation (25) reduces to 
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  0222
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It is clear from equation (28) the condition of instability 

remains the same as given by the equation (26) for both 

the cases of rotation taken in parallel and perpendicular 

directions to magnetic field. 

We write the dispersion relation (28) is non dimensional 

form in terms of self gravitation as 
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Where the various non-dimensional parameters are 

defined as 

  2
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  (30) 

The variation of non-dimensional growth rate verses non-

dimensional wave number are shown in fig. (1-2)  

 

  
Fig. 1    

 

               
Fig. 2 

In fig.(1) we have depicted the non-dimensional growth 

rate versed non-dimensional wave number for various 

arbitrary value of magnetic field 𝑉 ∗ = 0.0, 0.5, 1.0, 1.5 

and the value of other parameter are fixed. 

From fig.(1), we notice that the growth rate of the 

instability for non-magnetized medium (V* = 0) is higher 

in comparison with magnetized medium (V* > 0). It is 

also noted that the value growth rate is decreased with 

increasing magnetization of medium. Hence, we conclude 

that the increasing magnetic field tends to stabilize the 

system. In fig.(2) we have depicted the non-dimensional 

growth rate versed non-dimensional wave number for 

variation in the normalized rotational effect Ω∗ = 0.0, 1.0, 

2.0, 3.0 and the value of other parameter are fixed. 

From fig.(2), we conclude that the growth rate of the 

instability decreased with increasing values of rotation 

parameter, for non-rotating medium (Ω* = 0) the growth 

rate of the instability is maximum while for higher values 

of rotation it tends to minimize. Thus, we conclude that 

rotation parameter reduces the growth rate of the 

instability and maintain the stability of system. 

 

B.  Transverse Wave Propagation 

For transverse wave propagation  

KKK xZ  ,0 Equation (22) reduces to 

  044 2222222
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Equation (27) does not allow a positive real or a complex 

root whose real part is positive and so the system is 

stable. From equation (27), it is obvious that for rotation 

taken in perpendicular direction to magnetic field the 

condition of instability is same as given by equation (28). 

When rotation is taken parallel to magnetic field 

,0 x Equation (31) reduces to  
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The condition of instability is given by  
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This is the modified Jeans condition of instability due 

to magnetic field, finite electron inertia, and rotation and 

radiation pressure. It is clear from Equation (32) that the 

rotation and magnetic field give the stabilizing effect 

along with radiation where as finite election inertia 

destabilizing effect. 

 

VI. CONCLUSION 

To Summarize, we have dealt that the stabilizing effect 

of radiation pressure exists in general to modify the Jeans 

expression while the rotation and magnetic field stabilize 

the system only when wave propagation in transverse 
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direction to magnetic field with rotation taken along the 

direction of magnetic field. The finite electron inertia 

destabilizes the system only when wave propagates in 

transverse direction to magnetic field with rotation taken 

along the direction of magnetic field. it is also observed 

that the critical wave length increases with the increases 

of radiation pressure. 
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