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  Abstract- We apply integral transformation techniques to 

study thermoelastic response of a circular plate, in general in 

which sources are generated according to the linear function 

of the temperature, with boundary conditions of the radiation 

type. The results are obtained as series of Bessel functions. 

Numerical calculations are carried out for a particular case of 

a plate made of Aluminum metal and the results are depicted 

in figures. 
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I. INTRODUCTION 

Nowacki [5] has determined steady-state thermal 

stresses in a thick circular plate subjected to an 

axisymmetric temperature distribution on the upper face 

with zero temperature on the lower face circular edge. 

Wankhede [7] has determined the quasi-static thermal 

stresses in circular plate subjected to arbitrary initial 

temperature on the upper face with lower face at zero 

temperature. However there aren’t many investigations 

on transient state. Roychoudhary [6] has succeeded in 

determined the quasi static thermal stresses in a circular 

place subjected to transient temperature along the 

circumference of circular upper face with lower face at 

zero temperature and the fixed circular edge thermally 

insulated. In a recent work, same problems have been 

solved by Noda et al. [1] and Deshmukh et al. [2]. In all 

aforementioned investigations an axisymmetrically 

heated plate has been considered.  

Recently Nasser [4] proposed the concept of heat 

sources in generalized Thermo elasticity and applied to a 

thick plate problem. They have not however considered 

any thermoelastic problem with boundary conditions of 

radiation type in which source are generated according to 

the linear function of the temperature, which satisfies the 

time dependent heat conduction equation. From the 

previous literature regarding circular solid cylinder as 

considered, it was observed by the author that no 

analytical procedure has been established considering 

internal heat source generation within the body.  

This paper is concerned with the transient 

thermoelastic problem of a circular plate in which sources 

are generated according to the linear function of 

temperature occupying the space 

},)(0:),,{( 2/1223 hzhayxRzyxD   

where  2/122 )( yxr   with radiation type boundary 

conditions. 

II. STATEMENT OF THE PROBLEM 

Consider a circular plate in which sources are 

generated according to the linear function of temperature. 

The material is isotropic, homogeneous and all properties 

are assumed to be constant. Heat conduction with internal 

heat source and the prescribed boundary conditions of the 

radiation type is considered.  The equation for heat 

conduction is given by 
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Where k  is the thermal diffusivity of the material of the 

cylinder (which is assumed to be constant), subject to the 

initial and boundary conditions 
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Where k1 and k2 are radiation constants on the upper and 

lower surface of the cylinder respectively.  

The Navier’s equations without the body forces for 

axisymmetric two-dimensional thermoelastic problem can 

be expressed as [3] 

0
21

)1(2

21

1
2

2 
















r
a

r

e

r

u
u t

r
r







  

0
21

)1(2

21

12 
















z
a

z

e
u tz







    (6)                                                         

 

where  ru  and zu  are the displacement components in 

the radial and axial directions, respectively and the 

dilatation e  as 
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The displacement components are given by as [3]: 
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 In which Goodier’s thermoelastic potential must satisfy 

the equation 
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and the Michel’s function M  must satisfy the equation 
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The stress functions are given by 
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where G  and  
 
are the shear modulus and Poisson’s 

ratio respectively. The 
 

boundary conditions on the 

traction free surface of a solid cylinder are 

0 rzrr 
 
at ar                            

(15) 

The equations (1) to (15) constitute the mathematical 

formulation of the problem under consideration. 

 

III. SOLUTION OF THE PROBLEM 

Applying finite Hankel transform and finite Marchi 

Fasulo transform [3] we get the expression for 

temperature distribution as 
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Where m  
is the Marchi-Fasulo transform parameter, 
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Fig 1: Temperature distribution along r- and z-direction for 

t =3 

Fig. 1 shows the temperature distribution along the r and 

z direction of the circular plate at t = 3. It is observed that 

due to the width of the plate, increase in temperature was 

found at the beginning. Finally temperature distribution 

further increase and attains zero value at the extreme end.   

The solution for the displacement function are 

represented by the Goodier’s thermoelastic displacement 

potential 
 
governed by equation (8) is given by 
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The solution for Michel’s function M are assumed so as 

to satisfy the governed condition of equation (9) as 
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Using equations (16) and (17) in equations (6) and (7), 

the displacement components are obtained as 
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The stress components can be calculated by substituting 

the values of thermoelastic displacement potential 
 

from equation (16) and Michel’s function M from 

equation (17) in equations (10) to (13), one obtain the 

stress functions as 
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Similarly rz ,   and zz can be calculated
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Fig. 2: Radial stress distribution along r- and z- direction 

Fig. 2 shows the radial stress distribution rr along the r 

and z direction of the plate with varying time. From the 

figure, the location of points of minimum stress occurs at 

the end points, while the thermal stress response is 

maximum at the inner surface.  

 

IV. SPECIAL CASE 

Set  

)(),( 222 razzrf 
                                      (22) 

The temperature distribution is given as  
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V. NUMERICAL RESULTS, DISCUSSION 

AND REMARKS 

Set 5.021  kk , r0 = 0.20, z0 = 0.5 and 5.0   in 

equations (22) to (30).  
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Table 1: Material properties and parameters used in this 

study 

Modulus of Elasticity, E 6.9  1011 

Shear modulus, G 2.7  1011 

Poisson ratio,  0.281 

Thermal expansion coefficient 

t 

25.5  10-6 

Thermal diffusivity,  1 

Length, h 1 cm 

Outer radius, b 0.5  m 

       

 

VI. CONCLUSION 

In this paper, the temperature distributions, 

displacement components and thermal stresses of a 

circular plate have been derived with the help of finite 

Hankel transform and finite Marchi Fasulo transform 

techniques. The expressions are obtained in terms of 

Bessel’s functions in the form of infinite series and 

depicted graphically. Any particular case of special 

interest can be assigned by choosing suitable values to the 

parameters and functions. The results that are obtained 

can be used in the construction of engineering models 

particularly in the field of Aeronautical space.  
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