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Abstract-- The most popular means of FIR filtering technique 

is to utilize NLMS algorithm. As the length of the filter and 

consequently the number of filter coefficients increase, the 

design of the filter becomes complex and therefore the popular 

Max NLMS algorithm has been introduced. As a consequence 

the filter design becomes very easy but at the cost of its 

performance in terms of convergence characteristics i.e., 

convergence occurs at a later stage taking too long 

computational time for the processing of the signal. In this paper, 

a proposal of improving the convergence characteristics is made 

which does not affect the performance of the design without 

compromising the tap-selection process of the MMax NLMS 

algorithm. A concept of variable step-size for the filter 

coefficients is applied so that loss in performance due to MMax 

NLMS algorithm is effectively reduced and the convergence is 

better achieved for the given filter length. 

 

Index Terms — Mmax NLMS Algorithm, Variable Step-

Size, Performance, Convergence Characteristics, Filter 

Coefficients, Adaptive Algorithm. 

I. INTRODUCTION 

Finite impulse response (FIR) with Adaptive filtering 

techniques finds extensive application in signal processing. 

The normalized least-mean-square (NLMS) algorithm [1][2] 

is treated as one of the most popular adaptive algorithms in 

many applications. Since the NLMS algorithm requires 

O(2L) multiply accumulate (MAC) operations per sampling 

period, it is very desirable to reduce the computational 

workload of the processor. Partial update adaptive 

algorithms differ in the criteria used for selecting filter 

coefficients to update at each of the iteration. It is found that 

as the number of filter coefficients updated per iteration in a 

partial update adaptive filter is reduced, the computational 

complexity is also reduced but at the expense of some loss 

in performance. The aim of this paper is to propose 

improving the convergence characteristics of adaptive 

algorithm. It has been shown in [6] that the convergence 

performance of MMax-NLMS is dependent on the step-size. 

Analysis of the mean-square deviation of MMax-NLMS is 

first presented and then a variable step-size in order to 

increase its rate of convergence is derived. The simulation 

results verify that the proposed variable step-size MMax-

NLMS (MMax- NLMSvss) algorithm achieves higher rate 

of convergence with lower computational complexity 

compared to NLMS for white Gaussian noise (WGN). 

 

II. THE MMAX-NLMS ALGORITHM 

The output at the nth iteration, v(n) = u
T(n)h(n) where         

u(n) = [u(n),u(n-1),. . . ., u(n − L + 1)]T is the tap-input 

vector while the unknown impulse response     

1( ) [ ( ),....., ( )]T

o Lh n h n h n is of length L. An adaptive 

filter   
1

ˆ ˆ ˆ( ) [ ( ),....., ( )]T

o Lh n h n h n which assumed [3] to 

be of equal length to the unknown system h(n), is used to 

estimate h(n) by adaptively minimizing a priori error signal 

e(n) using ˆ( )v n defined by 

ˆ( ) ( ) ( ) ( ) ( )Te n u n h n v n g n                  Eq. 

(1) ˆˆ( ) ( ) ( 1)Tv n u n h n                                                Eq. 

(2) 

with g(n) being the measurement noise.  

In the MMax-NLMS algorithm [4], only those taps 

corresponding to the M largest magnitude tap-inputs are 

selected for updating at each iteration with 1 ≤ M ≤ L. 

Defining the sub-selected tap-input vector , 

ˆ( ) ( ) ( )u n Q n u n                                                      Eq. (3) 

where Q(n) = diag{q(n)} is an  L x L tap selection matrix 

and Q(n) = [q0(n), . . . , qL−1(n)]T element 

 qj(n) for j= 0, 1, . . . , L − 1 is given by,                         

 
 

j

1  u(n j)   M Maxima of  (n)
q n

0                                                   otherwise

  
 


u
Eq. (4)  

Where 

(n) u(n) , .., u( 1)
T

n L      u  

Defining 
2

. as the squared l2-norm, the MMax-NLMS tap-

update equation is then 

   
   

2

n e(ˆ nˆ )
1

(n)

µ n
n n

C
  



Q u

u
h h                  Eq. (5) 

where C is the regularization parameter. Defining IL×L as the   

L x L identity matrix, it is noted that if Q(n) = IL×L, i.e., with    

M = L, the update equation in (Eq. 5) is equivalent to the 

NLMS algorithm. Similar to the NLMS algorithm, the step-

size μ in (Eq. 5) controls the ability of MMax-NLMS to 

track the unknown system which is reflected by its rate of 

convergence. To select the M maxima of |u(n)| in (Eq. 4), 

MMax-NLMS employs the SORTLINE algorithm [7] which 

requires 2log2L sorting operations per iteration. The 

computational complexity in terms of multiplications for 

MMax-NLMS is O(L+M) compared to O(2L) for NLMS. 

The performance of MMax-NLMS normally reduces with 

the number of filter coefficients updated per iteration. This 

tradeoff between complexity and convergence can be shown 

by first defining  n , the normalized misalignment as 
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h
                                       Eq. (6)  

Fig.1 and Fig.2 shows the variation in convergence 

performance of MMax-NLMS with M for the case of           

L = 128 and μ = 0.1 using a white Gaussian noise (WGN) as 

input. For this illustrative example, WGN g(n) is added to 

achieve a signal-to-noise ratio (SNR) of 15dB. It can be seen 

that the rate of convergence reduces with reducing M as 

expected.  

 

III. MEAN SQUARE DEVIATION OF MMAX-

NLMS 

It has been shown in [5] that the convergence performance 

of MMax- NLMS is dependent on the step-size μ when 

identifying a system. Since the aim of this paper is to reduce 

the degradation of convergence performance due to partial 

updating of the filter coefficients, from Fig.2 it is clear that 

the convergence performance decreases as M=L/4. Fig.3 

shows the Normalized misalignment verses Time. 
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Fig1: Convergence curves of MMax-NLMS for different M. 
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Fig 2: Normalized Misalignment curves for different M. 

 

 The MSD of MMax-NLMS can be obtained by first 

defining the system deviation as 

    ( )ˆn n n h hò                                                 Eq. (7) 

    1 ( 1)ˆn n n   h hò
  

                                  Eq. (8)  

Subtracting (8) from (7) and using (5), we obtain 

   
   

 

n e(n)
1

( )T

µ n
n n

n C
  



Q u

u u n
ò ò                   Eq. (9) 

 Defining . as the expectation operator and taking the 

mean square of (9), the MSD of MMax-NLMS can be 

expressed iteratively as 

          
2 2Tφ n  φ (n) n  φ 1 Φ( )n µ   ò ò ò ò

   
Eq. (10)  

Where  
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                                                                                   Eq. (11)   

Assume that the effect of the regularization term Con the 

MSD is small. As can be seen from (Eq. 10), in order to 

increase the rate of convergence for the MMax-NLMS 

algorithm, step-size μ is chosen such that  Φ( )µ is 

maximized. 

 

IV. THE PROPOSED MMAX-NLMSVSS 

ALGORITHM 

Following the approach of [6], differentiating (Eq. 11) with 

respect to μ and setting the result to zero, 

   

 
     

2 2 1
2

2

( ) e
1 ( )

n

T
µ n n n

n n n e n 


 
              

  

u

u


u uò

 
giving the variable step-size  
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where 0 < μmax ≤ 1 limits the maximum of μ(n) and from [6] 

 
 

 

2

2

u n
Μ n

u n



                                                  Eq. (12) 

is the ratio between energies of the sub-selected tap-input 

vector  nu and the complete tap-input vector u(n), while              

 2 2 ( )g g n  . To simplify the numerator of μ(n) 

further, considering        ( )T Tn n n nu u u u  
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1
2 2T 2

n 1 n 1 (n)
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μ(n) can be further simplified by letting 

         
1

n ( )  1T Tn n n n n


   P u u u u   ò
     

Eq. (13)  

           
1

n   1T Tn n n n n


   P u u u u ò  Eq. (14)  

from which it is then shown that [9] 

             
12 2T n 1 n 1Tn n n n n


    
 

P u u u  ò ò
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12 2

T n 1 n n 1Tn n n



 
  

  
P u u uò ò  

Following the approach in [7], and defining 0 << α <1 as 

the smoothing parameter,  nP and  nP are estimated 

iteratively by 

           
1

1 1 n ( )T

an n n n e n 


      P P u u u  
   

Eq. (15) 

           
1

1 1 n  e(n)Tn n n n 


      P P u u u  Eq. (16)  

where       1Tn ne n u ò in (Eq. 16), the error ea(n) 

due to active filter coefficients  nu in (Eq. 15) is given as  

           ( 1)ˆ1  T T

ae n n n n n n     
 

u u  h hò   Eq. (17). 

It is important to note that since    T nnu h h(n) is 

unknown, ea(n) is to be approximated. Defining 

   L Ln n Q I Q  [9] as the tap-selection matrix which 

selects the inactive taps, we can express 

         1
T

ie n n n n   Q u ò as the error contribution 

due to the inactive filter coefficients such that the total error 

e(n) = ea(n) + ei(n). As explained in [6], for 0.5L ≤ M < L, 

the degradation in M(n) due to tap-selection is negligible. 

This is because, for M large enough, elements in  

are small and hence the errors ei(n) are small, as is the 

general motivation for MMax tap-selection [8]. 

Approximating      ea(n) ≈ e(n) in (Eq. 15) gives  

           
1

1 1 n ( )Tn n n n e n 


      P P u u u  
       

                                                                                    Eq. (18)
                                                                                                                                                                                                                                                                       

Using (Eq. 16) and (Eq. 18), the variable step-size is then 

given as 

 
 

   
x 22

2

ma

P n
μ n μ

n n CM


P



 

                     Eq. (19)  

where   2 2n gC M  . Since 
2

g is unknown, it is shown 

that approximating C by a small constant, typically 0.0001 

[8]. The computation of (Eq. 16) and (Eq. 18) each requires 

M additions. In order to reduce computation even further, 

and since for M large enough the elements in 

   nnQ u are small, approximating, 

   
22

n   P nP  gives  

 
 

   

2

max 2
2

P n
μ n μ

n P n CM







                      Eq. (20) 

When Q(n) = IL×L, i.e., M = L, MMax-NLMS is equivalent 

to the NLMS algorithm and from (Eq. 12),  = 1 and       

   
2 2

P n n P . As a consequence, the variable step-

size μ(n) in (Eq. 20) is consistent with that presented in [8] 

for      M = L.  

 

V. SIMULATION RESULTS 

The performance of MMax-NLMSvss in terms of the 

normalized misalignment is determined and defined in     

(Eq. 6) using WGN input. With a sampling rate of 8 kHz 

and a reverberation time of 256 ms, the length of the 

impulse response is  L = 1024. Similar to [9], C = 0.0001, α 

= 0.15 are taken, WGN g(n) is added to v(n) to achieve an 

SNR of 15dB. The value of μmax = 1 is taken for MMax-

NLMSvss while step-size μ for the NLMS algorithm is 

adjusted so as to achieve the same steady-state performance 

for all simulations. Fig.4 shows the improvement in 

convergence performance of MMax-NLMSvss over MMax-

NLMS for the cases of M = L/4. 
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Fig 3: Improvement in convergence performance of MMax-

NLMSvss over MMax-NLMS for different M. 
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Fig 4: Comparison curves of Convergence performance of 

MMax-NLMSvss with NLMS and MMax-NLMS. 

The step-size of NLMS has been adjusted in order to 

achieve the same steady-state normalized misalignment. 

This corresponds to μ = 0.1. More importantly, the proposed 

MMax-NLMSvss algorithm outperforms NLMS even with 

lower complexity when M =256. This improvement in 

normalized misalignment of 7 dB (together with a reduction 

of 25% in terms of multiplications) over NLMS is due to 

variable step-size for MMax-NLMSvss. The MMax-NLMSvss 

achieves the same convergence performance as the 

NLMSvss [8] when M = L. In order to illustrate the benefits 

of the proposed algorithm, M = 256 taken for both MMax-

NLMS and MMax-NLMSvss. This gives a 25% savings in 

multiplications per iteration for MMax-NLMSvss over 
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NLMS. As can be seen, even with this computational 

savings, the proposed MMax-NLMSvss algorithm achieves 

an improvement of 1.5 dB in terms of normalized 

misalignment over NLMS. 

 

VI. CONCLUSION 

By analyzing the mean-square deviation of MMax-NLMS 

we can derive a partial update MMax-NLMS algorithm with 

a variable step-size during adaptation for improvement of 

convergence characteristics. Computation of (Eq. 18), 

computations of  
2

  P n for (Eq. 20) require M 

multiplications each. The computation of  
2

u n  and 

 
2

u n  for M(n) in (Eq. 12) requires 2 multiplications and 

a division using recursive means. Since the term 

     
1

n ( )Tn n e n


  u u u is already computed in         

(Eq. 18), no multiplications are now required for the update 

equation in (Eq. 5). Hence including the computation of 

ˆ( ) ( 1)Tu n h n  for e(n), MMax-NLMSvss requires             

O(L + 2M) multiplications per sample period compared to 

O(2L) for NLMS. The number of multiplications required 

for MMax-NLMSvss is thus less than NLMS when             

M < L/2. Although MMax-NLMSvss requires an additional 

2 log2 L sorting operations per iteration using the 

SORTLINE algorithm [7], its complexity is still lower than 

NLMS. As with MMax-NLMS, we would expect the 

convergence performance for MMax-NLMSvss to degrade 

with reducing M. However, simulation results show that any 

such degradation is offset by the improvement in 

convergence rate due to μ(n). In terms of convergence 

performance, the proposed MMax-NLMSvss algorithm 

achieves approximately 3 dB improvement in normalized 

misalignment over NLMS for WGN input. More 

importantly, the proposed algorithm can achieve higher rate 

of convergence with lower computational complexity 

compared to NLMS. 
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