Fuzzy Graph Applications of Job Allocation

Dr. Senthilraj Swaminathan
senthilraj.sur@cas.edu.om

Abstract — In this paper we generalize the concept of the chromatic joins and chromatic sum of a graph to fuzzy graphs and define the fuzzy chromatic sum of a fuzzy graph. Here we consider fuzzy graph by taking fuzzy set of vertices and fuzzy set of edges. This concept of obtaining fuzzy sum of fuzzy colorings problem has a natural application in scheduling theory. In this paper we consider the problem of scheduling N jobs on a single machine and obtain the minimum value of the job completion times which is equivalent to finding the fuzzy chromatic sum of the fuzzy graph modeled for this problem.

Index Terms— Fuzzy Graphs, Chromatic Number, Chromatic Sum, \(\alpha \)-cut of Graph, k-fuzzy colouring of Graph, \(\Gamma \)-chromatic sum of Graph, chromatic fuzzy sum of Graph.

I. INTRODUCTION

The colouring problem consists of determining the chromatic number of a graph and an associated colouring function. Let \(G \) be a simple graph with \(n \) vertices. A colouring of the vertices of \(G \) is a mapping \(f : V(G) \rightarrow N \), such that adjacent vertices are assigned different colours. The chromatic sum of a graph introduced in [5] is defined as the smallest possible total over all vertices that can occur among all colourings of \(G \). In this paper we generalize these concepts to fuzzy graphs. Here we define fuzzy graphs with fuzzy vertex set and fuzzy edge set.

II. MAIN DEFINITIONS AND RESULTS

Definition-1: A graph \(G \) that requires different color for its proper colorings and the number \(k \) is called the chromatic number of \(G \).

Definition-2: A fuzzy set \(A \) defined on a non-empty set \(X \) is the family \(A = \{ (x, \mu_A(x)) / x \in X \} \), where \(\mu_A : X \rightarrow [0,1] \) is the membership function. In classical fuzzy set theory the set \(I \) is usually defined as the interval \([0,1] \) such that \(\mu_A(x) = 0 \), if \(x \) does not belong to \(A \), \(\mu_A(x) = 1 \), if \(x \) strictly belongs to \(A \) and any intermediate value represents the degree in which \(x \) could belong to \(A \). The set \(I \) could be discrete set of the form \(I = \{0, 1, 2, k \} \), where \(\mu_A(x) < \mu_A(x') \) indicates that the degree of membership of \(x \) to \(A \) is lower than the degree of membership of \(x' \).

Definition-3: Let \(V \) be a finite nonempty set. The triple \(G = (V, \sigma, \mu) \) is called a fuzzy graph on \(V \), where \(\sigma \) and \(\mu \) are fuzzy sets on \(V \) and \(E(V \times V) \) respectively, such that \(\mu([x, y]) \leq \min\{\sigma(x), \sigma(y)\} \) for all \(x, y \in V \).

We use \(\mu(xy) \) for \(\mu(\{x, y\}) \). The fuzzy sub graph of \(G \) is the graph \(G' = (V, \sigma', \mu') \) such that for \(x, y \in V \), we have \(\sigma'(x) \leq \sigma(x) \) and \(\mu'(xy) \leq \mu(xy) \).

Definition-4: Given \(\alpha \in (0,1] \), the \(\alpha \)-cut of \(G \) is the graph \(G^\alpha = (V^\alpha, E^\alpha) \), where \(V^\alpha = \{ x \in V / \sigma(x) \geq \alpha \} \) and \(E^\alpha = \{ xy \in E / \mu(xy) \geq \alpha \} \). The fuzzy graph have a finite number of different \(\alpha \)-cuts. The \(\alpha \)-cuts do not change through the following intervals: \(\{0, \alpha_1, \ldots, \alpha_{k-1}, \alpha_k \} \).

Definition-5: Let \(\Gamma = \{ \gamma_1, \gamma_2, \ldots, \gamma_k \} \) be a finite family of fuzzy sets on \(V \). The fuzzy set \(\Gamma \) on \(V \) is defined by \(\land \Gamma(x) = \max \gamma_i(x) \). \(\Gamma = \{ \gamma_1, \gamma_2, \ldots, \gamma_k \} \) is called a k-fuzzy colouring of \(G = (V, \sigma, \mu) \) if (i) \(\land \Gamma = \sigma \), (ii) \(\gamma_i \land \gamma_j = 0 \) and (iii). For every strong edge \(xy \) of \(G \), \(\min \gamma_i(x), \gamma_j(y) = 0, (1 \leq i, j \leq k) \) the least value of \(k \) for which \(G \) has a fuzzy colouring, denoted by \(\chi'(G) \), is called the fuzzy chromatic number of \(G \).

Definition-6: For a k-fuzzy colouring \(\Gamma = \{ \gamma_1, \gamma_2, \ldots, \gamma_k \} \) of the fuzzy graph \(G \), \(\Gamma \)-chromatic sum of \(G \), denoted by \(\Sigma_\Gamma(G) \), is defined as \(\Sigma_\Gamma(G) = 1 \sum_{x \in C_j} \theta_i(x) + \ldots + k \sum_{x \in C_j} \theta_k(x) \), where \(C_i = \) support of \(\gamma_i \) and \(\theta_i(x) = \max \{ \sigma(x) + \mu(xy) / y \in C_i \} \).

Definition-7: The chromatic fuzzy sum of \(G \) denoted by \(\Sigma(G) \) is defined as follows: \(\Sigma(G) = \min \{ \Sigma_\Gamma(G) / \Gamma \) is a fuzzy colouring of \(G \} \) the number of fuzzy colourings of \(G \) is finite and so there exists a fuzzy colouring \(\Gamma_0 \) which is called the minimal fuzzy colouring of \(G \) such that \(\Sigma(G) = \Sigma_{\Gamma_0}(G) \).

III. THEOREMS

Theorem-1: Let \(G \) be a fuzzy graph and \(\Gamma_0 = \{ \gamma'_1, \gamma'_2, \ldots, \gamma'_k \} \) a minimal fuzzy sum colouring of \(G \). Then the \(\Sigma_{\gamma_i \in C_j} \theta_i(x) \geq \Sigma_{\gamma_i \in C_j} \theta_j(x) \geq \ldots \geq \Sigma_{\gamma_i \in C_j} \theta_k(x) \).

Proof: Suppose that for some \(i < j \) we have \(\sum_{x \in C_j} \theta_i(x) < \sum_{x \in C_j} \theta_j(x) \).

Consider the fuzzy colouring \(\Gamma' = \{ \gamma' : \gamma_i \not\equiv \gamma_j \} \), \(\gamma'_i, \gamma'_j \equiv \gamma_i, \gamma_j \).

\(\Gamma' \) = \{ \gamma'_1, \gamma'_2, \ldots, \gamma'_k \} defined by \(\gamma'_i, \gamma'_j \equiv \gamma_i, \gamma_j \).
Now we have
\[\Gamma'_0 (G) - \Gamma_0 (G) = (i - j) [\sum_{x \in X} \theta_j (x) - \sum_{x \in X} \theta_i (x)] \leq 0. \]
Therefore, \[\Gamma'_0 (G) < \Gamma_0 (G) \] this contradicts the minimality of \[\Gamma_0. \]

Theorem-2: For a fuzzy graph \[G = (V, \sigma, \mu) \]
\[\Sigma (G) \leq \frac{3}{4} (\chi (G) + 1) h(\sigma) |V|. \]

Proof: Let \[\Gamma_1 \] be a - colouring of \[G \] such that \[\Sigma (G) = \Sigma_{\Gamma_1} (G) \], by Theorem-1, we have
\[\Sigma_{\Gamma_1} \theta (x) \geq \Sigma_{\Gamma_2} \theta (x) \geq \cdots \geq \Sigma_{\Gamma_k} \theta (x) . \]
Hence, for each \[i, 1 \leq i \leq k \] we have
\[\Sigma_{\Gamma_1} \theta (x) + (\chi (G) - i + 1) \Sigma_{\Gamma_k} \theta (x) \leq \frac{(\chi (G) + 1)}{2} [\Sigma_{\Gamma_1} \theta (x) + \Sigma_{\Gamma_k} \theta (x)] . \]
Then,
\[\sum_{1 \leq i \leq k} \Sigma_{\Gamma_1} \theta (x) \leq \frac{(\chi (G) + 1)}{2} \sum_{1 \leq i \leq k} \Sigma_{\Gamma_k} \theta (x) . \]
But since we have
\[\sum_{1 \leq i \leq k} \Sigma_{\Gamma_k} \theta (x) \leq (3h(\sigma)/2) |V| . \]
Thus the upper bound for \[\Sigma (G) \] is.
\[\frac{3}{4} (\chi (G) + 1) h(\sigma) |V| . \]

Definition-8: For the fuzzy graph \[G = (V, \sigma, \mu) \], define \[w = \min \{ \sigma(x) + \mu(xy) \} > 0 / x \in V, \text{ xy is a weak edge of } G \} . \]

Remark:
1. Let \[G = (V, \sigma, \mu) \] be a connected fuzzy graph with \[e \] strong edges. Then the lower bound for \[\Sigma (G) = w \sqrt{8} e \].
2. The fuzzy chromatic sum lies between \[w \sqrt{8} e \] and \[\frac{3}{4} (\chi (G) + 1) h(\sigma) |V| . \]

IV. Example

Let us consider the example of scheduling 6 jobs on a single machine. At any given time the machine is capable to perform any number of tasks, as long as these tasks are independent or the conflicts between them are less than 1. The consuming time of tasks 1 and 5 is 1 hr. and that of tasks 3 and 4 and task 2 are 0.2 hrs. and 0.3 hrs. Respectively. Tasks \{1,2\} \{2,3\} \{3,4\} \{2,4\} \{3,5\} can be performed together with a conflict of 0.3 hrs. and the tasks \{1,3\} \{2,3\} \{3,4\} \{2,4\} \{3,5\} can be performed together with a conflict of 0.1 hrs. Suppose the machine is capable to perform on x and y simultaneously the amount of time that machine spends on x (or y) depends on the individual amount of time which was previously spent on x (or y) together with the measure of conflict between x and y. Our goal is to minimize the average response time, or equivalently to minimize the sum of the task completion time. In order to solve this problem we define the fuzzy graph
\[\hat{G} = (V, \sigma, \mu) , \] where \[X \] is the set of all tasks, \[\sigma (x) \] is the amount of the consuming time of the machine for each \[x \in X \] and \[\mu(xy) \] is the measure of the conflict between the tasks x and y. Finding the minimum value of the job completion times for this problem is equivalent to the chromatic fuzzy sum of \[\hat{G} \] which we will study in this section. The fuzzy graph \[G = (V, \sigma, \mu) \] corresponding our example is defined as follows,
\[\sigma (v_i) = \begin{cases} 1 & \text{for } i = 1,5, \\ 0.3 & \text{for } i = 2, \\ 0.2 & \text{for } i = 3,4 \end{cases}, \]
\[\mu(v_i,v_j) = \begin{cases} 0.3 & \text{for } i,j \in \{12,35\}, \\ 0.1 & \text{for } i,j \in \{13,23,24,25,34\}, \\ 0 & \text{otherwise}. \end{cases} \]

Let \[\Gamma = \{ \gamma_1, \gamma_2, \gamma_3 \} \] be a family of fuzzy sets defined on \(v \), where
\[\gamma_1 (v_i) = \begin{cases} 1 & \text{for } i = 1, \\ 0.2 & \text{for } i = 4, \\ 0 & \text{otherwise}. \end{cases} \]
\[\gamma_2 (v_i) = \begin{cases} 0.3 & \text{for } i = 3, \\ 0 & \text{otherwise}, \end{cases} \]
\[\gamma_3 (v_i) = \begin{cases} 1 & \text{for } i = 5, \\ 0.3 & \text{for } i = 1, \\ 0.2 & \text{for } i = 3, \\ 0 & \text{otherwise}. \end{cases} \]

Fig. 1. The fuzzy graph corresponding to example
International Journal of Engineering and Innovative Technology (IJEIT)
Volume 1, Issue 2, February 2012

9

\[\gamma_i = \begin{cases} 1, & i \in \{1,5\} \\ 0,2, & i = 4 \\ 0, & \text{otherwise} \end{cases} \]

Then \(\Gamma \) – chromatic fuzzy sum of \(G \), \(\sum_{\Gamma} = 1(1+0.2) + 2(0.3) = 1.8. \)

Let us find the lower bound for \(\sum_{\Gamma} \), i.e., \(w \sqrt{8} \). Where, \(e \) is no of strong edges of \(G \).

The set of weak edges are \{15, 14, and 45\}

\[w = \min \{\sigma(x) + \mu(xy) > 0 / x \in V, \ XY \text{ is a weak edge of } G\}. \]

\[\sum_{\Gamma} (G) \geq w \sqrt{8} e = 0.2 \sqrt{5} \times e = 1.4967 \]

The chromatic fuzzy sum of \(G \), \(\sum_{\Gamma} (G) = \min \{9, 1, 8\} = 1.8 \)

\[\sum_{\Gamma} (G) = \frac{3}{4}(\chi(G) + 1)h(\sigma) |\Gamma| = \frac{3}{4}(3)(1.5) = 11.25 \]

The fuzzy chromatic number lies between 1.4967 and 11.25. But in our problem \(\sum_{\Gamma} (G) = 1.8 \) since it is not possible to find a \(k \)-colouring such that the corresponding fuzzy chromatic sum is less than 1.8. Therefore the minimum time of completion of jobs in our examples is 1.8 hrs.

V. CONCLUSION

This paper demonstrate the problem of scheduling N jobs on a single machine and obtain the minimum value of the job completion times which is equivalent to finding the fuzzy chromatic sum of the fuzzy graph modelled for this problem.

ACKNOWLEDGMENT

I would like to thank the referees and editorial board committee for their helpful comments, which have improved the presentation of this research articles. I would also like to thank the editors for their valuable suggestions that have improved the clarity of the paper.

REFERENCES

AUTHOR BIOGRAPHY

Dr. Senthilraj Swaminathan is presently working as a Assistant Professor in Mathematics at Sur College of Applied Science, Ministry of Higher Education Sultanate of Oman, He has 20 years of teaching experience and 5 years of research experience. He has presented Research papers in more than 15 national and international conferences and published more than 20 papers in national and international journals. He is authoring of the text books, “Introduction to Discrete Mathematics and its Application” and “Fundamentals of Graph Theory and its Applications”. His research areas include Graph Theory, Applied Mathematics and Theory of Computations.