## ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 11, May 2018 # Product cordial labeling of triple path union on C<sub>3</sub>, C4, C5 Mukund V. Bapat Abstract: A triple path union $P_m(3-G)$ is obtained by fusing three copies of same graph G at each vertex of path $P_m$ . We take $G = C_3$ , $Fl(C_3)$ , and tail $(C_3, 2p_2)$ to obtain $P_m(3-G)$ and show that all of them are product cordial graphs. Key words: path union triangle, product cordial, labeling, fusion. **Subject Classification: 05C78** #### I. INTRODUCTION The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [9], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[11]. I.Cahit introduced the concept of cordial labeling [7]. There are variety of cordial labeling available labeling of graphs. Sundaram, Ponraj, Somasundaram [10] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to {0,1} such that if each edge uv is assigned the label f(u)f(v), the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1, and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a product cordial labeling is called a product cordial graph. We use v<sub>f</sub>(0,1) = (a, b) to denote the number of vertices with label 1 are a in number and the number of vertices with label 0 are b in number. Similar notion on edges follows for $e_f(0,1) =$ (x, y). A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gillian. We mention some part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; PmUPn; CmUPn; PmUK1,n; WmUFn (Fn is the fan Pn+K1); $K1,m\cup K1,n$ ; $Wm\cup K1,n$ ; WmUPn; WmUCn; the total graph of Pn (the total graph of Pn has vertex set V (Pn)UE(Pn) with two vertices adjacent whenever they are neighbors in Pn); Cn if and only if n is odd; $C_n^{\ (t)}$ , the one-point union of t copies of C<sub>n</sub>, provided t is even or both t and n are even; K2+mK1 if and only if m is odd; $C_m \cup P_n$ if and only if m+n is odd; $K_{m,n} \cup Ps$ if s > mn; $Cn+2 \cup K1,n$ ; $Kn \cup Kn,(n-1)/2$ when nis odd; KnUKn-1,n/2 when n is even; and P2 n if and only if n is odd. are product cordial graphs. They also prove that $K_{m,n}$ (m,n> 2), $P_m \times P_n$ (m,n> 2) and wheels are not product cordial and if a (p,q)-graph is product cordial graph, then q = 6 (p-1)(p + 1)/4 + 1.In this paper we show that $P_m(G)$ where Graph G is from {C<sub>3</sub>, Fl(C<sub>3</sub>), and tail(C<sub>3</sub>,2p<sub>2</sub>)} are product cordial graphs. #### II. PRELIMINARIES **Fusion of vertex**. Let G be a (p,q) graph. Let $u\neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p-1 vertices and at least q-1 edges. If $u \in G_1$ and $v \in G_2$ , where $G_1$ is $(p_1,q_1)$ and $G_2$ is $(p_2,q_2)$ graph. Take a new vertex w and all the edges incident to u and v are joined to v and vertices v and v are deleted. The new graph has v-1 vertices and v-1 edges. Sometimes this is referred as v-1 is identified with the concept is well elaborated in John Clark, Holton [6]. Path union of G, i.e. $P_m(G)$ is obtained by taking a path $p_m$ and take m copies of graph G. Then fuse a copy each of G at every vertex of path at given fixed point on G. It has mp vertices and mq + m - 1 edges. Where G is a (p,q) graph. #### III. RESULTS **Theorem 1.** $G = P_m(3-C_3)$ is product cordial for all m. Proof: Take a path $P_m=(v_1, e_1, v_2, e_2,...v_m)$ . At $i^{th}$ vertex of Pm fuse three copies of $C_3$ and are given by $u_{i,1}=v_i,u_{i,2},u_{i,3},u_{i,4},u_{i,5},u_{i,6},u_{i,7}$ . The vertex $u_{i,1}$ is common to path $P_m$ and all three copies of $C_3$ . |V(G)|=7m and |E(G)|=10m-1. Define a function $f:V(G) \rightarrow \{0,1\}$ as follows: Case m = 2x $f(u_{i,j})=0$ for all i=1,2,...x, j=1,2,...,7 $f(u_{i,j}) = 1$ for all i = x+1, x+2,... 2x; j = 1, 2, ..., 7. The label number distribution is $v_f(0,1) = (7x, 7x)$ and $e_f(0,1) = (10x,10x-1)$ Case m = 2x+1 To obtain a labeled copy of $P_{2x+1}(C_3)$ we label P2x(C3) part of it from one end as given above. Further $f(u_{i,j}) = 1$ for j = 1, 2, 3, 4 and i = 2x+1; $f(u_{i,j}) = 0$ for j = 5, 6, 7 and i = 2x+1. The label number distribution is $v_f(0,1) = (7x+3, 7x+4)$ and $e_f(0,1) = (10x+5,10x+4)$ . Fig 1 labeled copy #### ISO 9001:2008 Certified # International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 11, May 2018 $f(u_{i,j}) = 1$ for all i = x+1, x+2,... 2x; j = 1, 2, ..., 10. The label number distribution is $v_f(0,1)=(10x,\ 10x)$ and $e_f(0,1)=(13x,13x-1)$ . Case m = 2x+1 Thus the graph G is product cordial for all m. **Theorem 2** G= $P_m(3-G')$ is product cordial for all m where $G' = FL(C_3)$ . (For all structures) Proof: Take a path $P_m=(v_1, e_1, v_2, e_2,...v_m)$ . At $i^{th}$ vertex of $P_m$ fuse three copies of G' and are given by $u_{i,1}=v_i,u_{i,2},u_{i,3},u_{i,4},u_{i,5},u_{i,6},u_{i,7},u_{i,8},u_{i,9},u_{i,10}$ where $u_{i,4},u_{i,7}$ and $u_{i,10}$ are pendent vertices. The vertex $u_{i,1}$ is common to path $P_m$ and all three copies of $C_3$ . |V(G)|=10m and |E(G)|=13m-1. Define a function $f:V(G) \rightarrow \{0,1\}$ as follows: Structure I: This is obtained when two degree vertex on each of three copies of $C_3$ are fused with path vertex. Case m = 2x $f(u_{i,j})=0$ for all i=1, 2, ...x, j=1, 2, ..., 10 $f(u_{i,j}) = 1$ for all i = x+1, x+2,... 2x; j = 1, 2, ..., 10. The label number distribution is $v_f(0,1) = (10x, 10x)$ and $e_f(0,1) = (13x,13x-1)$ Case m = 2x+1 To obtain a labeled copy of $P_{2x+1}(G')$ we label $P_{2x}(G')$ part of it from one end as given above with only two change given by $f(u_{i,4})=0$ for i = x+1; $f(u_{i,7})=0$ for i = x+1 Further $f(u_{i,j}) = 1$ for j = 1, 2, , ... 7 and i = 2x + 1; $f(u_{i,i}) = 0$ for j = 8, 9, 10 and i = 2x + 1. All vertices labeled as Fig .2 $P_3(FL(C_3))$ : structure 1: $v_f(0,1) = (15, 15)$ and The label number distribution is $v_f(0,1) = (10x+5, 10x+5)$ and $e_f(0,1) = (13x+6,13x+6)$ . Structure II: This is obtained when three degree vertex on each of three copies of $C_3$ are fused with path vertex. Case m = 2x. $f(u_{i,i})=0$ for all i=1, 2, ... x, j=1, 2, ..., 10 All vertices labeled as '0' Fig 3 $P_2(FL(C_2))$ : structure 2: $v_0(0.1) = (15.15)$ and $e_0(0.1) = (15.15)$ To obtain a labeled copy of $P_{2x+1}(G')$ we label $P_{2x}(G')$ part of it from one end as given above. $$f(u_{i,j}) = 1$$ for $j = 1, 2, 3, 5, 6$ . and $i = 2x+1$ ; $$f(u_{i,i}) = 0$$ for $i = 4,7,8,9,10$ and $i = 2x+1$ . The label number distribution is $v_f(0,1) = (10x+5, 10x+5)$ and $e_f(0,1) = (13x+6,13x+6)$ . **Structure III**: This is obtained when any of the pendent vertices on each of three copies of G' are fused with path vertex. Case m = 2x. $$\begin{split} &f(u_{i,j}) = 0 \text{ for all } i = 1,\,2,\,..x\;,\,j = 1,\,2,\,..,\!10\\ &f(u_{i,j}) = 1 \text{ for all } i = x\!+\!1,\,x\!+\!2,\!..\quad 2x;\,j = 1,\,2,\,..,\!10. \end{split}$$ The label number distribution is $v_f(0,1)=(10x,\ 10x)$ and $e_f(0,1)=(13x,13x-1).$ For m = 2x+1 the product cordial labeling does not exists. **Theorem 3.** G= $P_m(3-G')$ is product cordial for all m where $G' = tail(C_3, 2p_2)$ Proof: There are three structures on path union depending on which point on G' is used to obtain a path union by fusing with path vertex. In all structures a path $P_m=(v_1, e_1, v_2, e_2,...v_m)$ remains unchanged. In **Structure** IAt $i^{th}$ vertex of $P_m$ fuse three copies of G' and are given by $u_{i,1}=v_i,u_{i,2},u_{i,3},u_{i,4},u_{i,5},u_{i,6},u_{i,7},u_{i,8},u_{i,9},u_{i,10},u_{i,11},u_{i,12},u_{i,13}$ ## ISO 9001:2008 Certified ## International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 11, May 2018 where $u_{i,4}$ , $u_{i,5}$ and $u_{i,8}$ , $u_{i,9}$ , $u_{i,12}$ , $u_{i,13}$ are pendent vertices at $u_{i,3}$ , $u_{i,7}$ , $u_{i,7}$ , $u_{i,11}$ , $u_{i,11}$ respectively. Define a function f: $V(G) \rightarrow \{0,1\}$ as follows: Structure 1 is obtained when two degree vertex on each of three copies of G' are fused with path vertex. The vertex $u_{i,1}$ is common to path $P_m$ and all three copies of G'. |V(G)|=13m and |E(G)|=16m-1. Case m = 2x $$f(u_{i,j})=0$$ for all $i=1, 2, ...x$ , $j=1, 2, ...,13$ $$f(u_{i,i}) = 1$$ for all $i = x+1, x+2,...$ 2x; $j = 1, 2, ..., 13$ . The label number distribution is $v_f(0,1) = (13x, 13x)$ and $e_f(0,1) = (16x,16x-1)$ Case m = 2x+1 To obtain a labeled copy of $P_{2x+1}(G')$ we label $P_{2x}(G')$ part of it from one end as given above. Further $f(u_{i,j}) = 1$ for j = 1, 2, ..., 6,7 and i = 2x+1; $$f(u_{i,j}) = 0$$ for $j = 8, 9,..,13$ and $i = 2x+1$ . The label number distribution is $v_f(0,1) = (13x+6, 13x+7)$ and $e_f(0,1) = (16x+7,16x+8)$ . **Structure II**: This is obtained when four degree vertex on each of three copies of G' are fused with path vertex. At the $i^{th}$ vertex of path $P_m$ the design fused has ordinary label given as in the diagram below. Fig 4 ordinary labeling of structure II fused at ith vertex of P<sub>m</sub> Case m = 2x. $$f(u_{i,j})=0$$ for all $i=1, 2, ...x$ , $j=5,8,9,11,12,13$ $$f(u_{i,j}) = 1$$ for all $i = x+1, x+2,...$ 2x; $j = 1,2,3,4,6,7,10$ The label number distribution is $v_f(0,1)=(13x,\ 13x)$ and $e_f(0,1)=(16x,16x-1).$ Case $$m = 2x+1$$ To obtain a labeled copy of $P_{2x+1}(G')$ we label $P_{2x}(G')$ part of it from one end as given above. Further $$f(u_{i,j}) = 0$$ for $j = 5, 8, 9, 11, 12, 13$ , $i = 2x+1$ ; $$f(u_{i,j}) = 1$$ for $j = 1,2,3,4,6,7,10,11$ and $i = 2x+1$ . The label number distribution is $v_f(0,1) = (13x+6, 13x+7)$ and $e_f(0,1) = (16x+7,16x+8)$ . **Structure III**: This is obtained when any of the pendent vertices on each of three copies of G' are fused $i^{th}$ path vertex. At the $i^{th}$ vertex of path $P_m$ the design fused has ordinary label given as in the diagram below. Fig .5 ordinary labeling of structure III fused at ith vertex of P<sub>m</sub> Case m = 2x. $$f(u_{i,j})=0$$ for all $i=1, 2, ...x$ , $j=1, 2, ..., 13$ $$f(u_{i,j}) = 1$$ for all $i = x+1, x+2,... 2x$ ; $j = 1, 2, ..., 13$ . The label number distribution is $v_f(0,1) = (13x, 13x)$ and $e_f(0,1) = (16x,16x-1)$ . Case $$m = 2x+1$$ To obtain a labeled copy of $P_{2x+1}(G')$ we label $P_{2x}(G')$ part of it from one end as given above. Further $$f(u_{i,i}) = 0$$ for $i = 7,8,10,11,12,13$ , $i = 2x+1$ ; $$f(u_{i,j}) = 1$$ for $j = 1,2,3,4,5,6,9$ and $i = 2x+1$ . The label number distribution is $v_f(0,1) = (13x+6, 13x+7)$ and $e_f(0,1) = (16x+7,16x+8)$ . ## ISO 9001:2008 Certified # International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 11, May 2018 #### IV. CONCLUSION In this paper we have obtained path union by fusing three copies of same graph G at a particular vertex of G with path vertex. This is triple path union and is denoted by Pm(3-G). We discuss resultant structure for product cordial labeling. We have proved that: - 1) $P_m(3-C_3)$ is product cordial for all m. - 2) $P_m(3-G')$ is product cordial for all m where $G' = FL(C_3)$ . (For all structures) - 3) = $P_m$ (3-G') is product cordial for all m where G' = tail (C<sub>3</sub>, 2p2). #### REFERENCES - Bapat M.V. Some new families of product cordial graphs, Proceedings, Annual International conference, CMCGS 2017, Singapore, 110-115. - [2] Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr2017 pg 23-29 IJMTT. - [3] Bapat M. V. Some complete graph related families of product cordial graphs. Arya bhatta journal of mathematics and informatics vol 9 issue 2 July-Dec 2018. - [4] Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archives IJMA Sept 2017 issue. - [5] Bapat M.V. Ph.D. Thesis, University of Mumbai 2004. - [6] John Clark and D. Holton, A book "A first look at graph Theory", world scientific. - [7] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23 (1987) 201-207.Harary, Theory, Narosa publishing, New Delhi. - [8] J. Gallian Electronic Journal Of Graph Labeling (Dynamic survey)2016. - [9] Harary, Graph Theory, Narosa publishing, New Delhi. - [10] M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155–163, 2004. - [11] D West Introduction to graph Theory, Pearson Education Asia.