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Abstract—In this paper, we propose a new mathematical model 

for communication network using game theory. In this model we 

consider a number of users who wish to send their throughput 

demand in the form of packets through one or more links with 

minimum cost or more efficiently (say in less time) than the other 

users. This results into a kind of non-cooperative situation in 

communication network. Two particular scenarios are studied: 

first when number of packets to be sent is less than the link 

capacity, and the second when number of packets exceeds the link 

capacity. Both these situations are modeled by multiple shot 

games. We discuss different type of cost functions and existence of 

Nash equilibrium. Our model is different from other transmission 

network models studied elsewhere in three aspects. These are 

regarding introduction of time (discrete) variable, a new idea of 

direct penalty to the users, and indirect penalty in the form of cost 

of transmission as an increasing function of time. This model of 

non-cooperative game leads to multiple Nash equilibrium points. 

To select one equilibrium point from these multiple points we use 

the concept of focal point and Pareto optimal point which lead to 

socially preferable solution. 

 
    Index Terms—Compact, Convex, Focal points, Nash 

equilibrium, Paretooptimality. 

I. INTRODUCTION 

A. Orda, Rom and Shimkin (1993)[1]proposed a game 

theoretical model to deal with the routing problem in 

networking, contributing  to the understanding of the 

dynamic of the modern network. Here dynamic means users 

change their behavior based on the state of the network. Each 

user knows its individual throughput demands, can measure 

the load on the network links and routing is selected by each 

user so as to optimize a certain selfish criterion such as cost. 

The performance of a user is measured by the cost function 

which depends on the system flow configuration f. The 

system flow configuration f represents the flow of all users in 

a vector form.  The authors defined cost function for user  as   

  and the general family of the cost 

function is referred as type A which includes two special 

category type B and type C.  Theorem related to the 

uniqueness of Nash equilibrium is also established for type A 

function. Elementary Stepwise System (ESS) shows simple 

convergence to the NEP for the network. 

IsmetSahin and Marwan A. Simon (2006) [2] proposed a 

model for two node parallel link communication system with 

multiple competing users. The authors derived flow and 

routing control   policy for each user to get the Nash 

equilibrium point. Maximizing throughput and minimizing 

delay are two main objectives which combine additively in a 

function known as a utility function for each user. Preference 

constants are also introduced for the two objectives and the 

links.  Each user is given the flexibility of choosing its own 

objective between the two objectives and certain links over 

the other links. For the first time, users are given such a 

flexibility which not only to balance between throughput and 

delay but increase the usage of desirable links. The utility 

function for user    is defined in the form of “benefit – cost”. 

It depends on the flow rate of user on link  ( ) and link 

capacity  .  

 
The parameters  and  are the preferences that user  

assigns to each link for the benefit and the cost term of the 

utility function and their ratio is the trade off 

parameter for link m. The authors conclude that a unique NE 

exists that satisfies the following equation (for user and 

link ) 

 
 

Where . This NE is 

feasible if  for all  

 E. Altman, T. Basar , T. Jimenez and N. Shimkin [3] 

establish the conditions for the uniqueness of the Nash 

Equilibrium. The cost for the link is the function of total 

load   on that link i.e . 

where  are 

links specific positive parameters. The cost for player   is 

given by  

 
Now the condition for uniqueness of NE is 

where

. If additionally 

 in the cost for the link and all users have the same 

source and destination, the resulting NE is globally optimal 

and the link flows of different users are proportional to their 

total traffic. 

Altman and Wynter (2004)[4] highlighted a number of 

areas in which common features between transportation and 

telecommunication network model exist. 

Bottleneck Routing Games were studied by R.Banner and 

A. Orda [5]. The author investigated that “Bottleneck” 

(worst) routing games appear in two main routing scenarios, 

namely when a user can split its traffic over more than one 
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path (Splittable bottleneck game) and when it cannot 

(unsplitable bottleneck game). Also they have shown that a 

bottleneck game has always admitted a Nash equilibrium, 

moreover, best response dynamics in unsplitable games 

converge to a Nash equilibrium in finite time. This Nash 

equilibrium (both in splitable and unsplitable bottleneck 

games) can be very inefficient. In order to cope with this 

inefficiency, the authors investigated for each game 

“reasonable “conditions under which Nash equilibrium are 

socially optimal. The condition is  

Given a Nash flow f is said to satisfy the efficiency 

condition if all users route their traffic along paths with a 

minimum number of bottlenecks i.e. for each and  

 with flow  it holds that 

. 

Massey [6] proposed a telecommunication model using 

queuing theory. In this model the impact of time varying 

behavior on communication system was studied. 

II. PROPOSED MODEL “A DYNAMIC MODEL” 

The work presented here deals with routing data packets in 

a communication network. The players/users come to the 

"game" with the knowledge of the number of packets they 

wish to send through one or more network link over the  

chances/shots. As usual each link at a given chance/shot has a 

finite capacity to carry the packets. In other models, the users 

are dissuaded from sending the number of packets exceeding 

capacity of a link by making the cost infinity for such a 

situation and there is a transmission failure in the sense that 

no one packet is sent through the link. 

In our model, the cost of transmission remains finite even 

if the sum of packets wished to be sent by the users through a 

given link in a given slot/shot exceeds the specified capacity 

of the link. However, we introduce a mechanism which will 

be followed to cope up with the above situation. 

III. MATHEMATICAL MODELING 

In the present communication network model, we consider 

two users sharing one link connecting a source node to a 

destination node. We assume that the link is available to the 

users over a discrete range of time known as time slots and 

there are  time slots in a single cycle. Users are rational and 

selfish for this competitive game. Each user has throughput 

demand  which he/she wants to ship from source to 

destination. A user sends its throughput demand in the form 

of data packets through the communication link and is able to 

decide at any time how the data packets will be transmitted 

and what fraction of throughput demand should be sent at that 

time through the link.  

A. Mechanism for packet transmission 

Let the first user plan to send  packets 

and second user plan to send  packets in  

number of time slots. i.e. in first time slot first user and 

second user plan to send   and  packets respectively.  

If  (Capacity of the link) then all packets of 

both users will be transmitted. Since the capacity   of the 

link is fixed and this is a noncooperative game therefore it is 

impossible for the user to get the information of strategy of 

other user. 

So the situation may occur when . In this case 

the user with minimum packets will able to transmit his /her 

data and other user cannot transmit his/her data packets 

completely in the first slot. For example if  then  

packets of user 2 will be transmitted but user 1 can transmit 

only  packets from packets. Remaining 

 packets will be transmitted in the next time 

slot with . Now modified  is  

To keep record of non-transmitted and planned packets we 

need two more strategy sets. Consider these sets are 

intermediate strategy sets and actual strategy sets. Assume 

that an intermediate strategy set for first user 

as   and for second user as . 

Now actual strategy sets (i.e. Data packets in a different time 

slot) may be different from the intermediate and planned 

strategy set for both users. Let  and 

be the data packets transmitted by first and 

second user respectively in  time slots.   Initially  

   and  

The situations discussed above can be described using 

these intermediate and actual strategy sets as follows: 

 

Case I: When  

i.e. number of packets wanted to be shipped by users on the 

link are less or equal to the link capacity. In this case all data 

packets will be transmitted. Mathematically this situation can 

be expressed as 

 
 

Case I : When  

 In this case number of packets wanted to be shipped by the 

users exceeds the link capacity. Now it is not possible to 

transmit all packets in the same time slot. Hence we need a 

mechanism to reduce these packets according to the capacity 

of the link.  

(i)  , This inequality shows that both users want 

to use  ,the maximum capacity of the link 

(ii) If  then all packets of user 2 will be 

transmitted to the link and from  only  

packets will transmit i.e.  and  

packets will be added to  to get .  Mathematically  

 Step 1:  

 Step 2:    

(iii) Similarly if  then all packets of user 1 will 

be transmitted and from  only  packets will 

transmit to the link i.e.  and  

packets will be added to  to get . Mathematically  

Step 1:  

Step 2:    
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(iv) If  then packets of each user will be 

transmitted i.e. and   

and .  

Now in the next step, in spite of comparing , we 

will compare . Step (ii) or (iii) will be performed for 

each where . Since may be 

greater than  respectively therefore the cost may be 

greater than the cost of the planned strategy set. 

B. Strategy sets and constraints 

 Now we will discuss the properties of element of all 

strategy sets. 

P1 :  

(Non – negative constraint) 

P2 :  

(Demand constraint for first and second user ) 

P3 :  

(Relation between three strategy set) 

P4 :  

     (Recurrence relations of and )  

P5 :  

      (Capacity constraint for each ) 

P6 :    

 This property shows that actual data transmitted in all time 

slots are less or equal to the throughput demand of the user. In 

this paper, we consider only those cases in which user’s 

throughput demands satisfied the 

conditions  . 

IV. ROUTING SCHEME AND COST FUNCTION 

We describe routing scheme in a single link 

communication network for users. Users can route one or 

more packets on this link at time slot  

A.  General Assumptions of Cost Function 

The following general assumptions on the cost function 

 of each user where  will be imposed throughout 

the paper. 

A1 : It is a sum of the cost of routed packets 

over the link in each time slot by user .  

A2 : Cost function is non- linear and non- negative function . 

A3 :  is a continuous function for each time 

slot . 

A4 : Cost function is strictly increasing with the number of 

packets in intermediate strategy set  say  ,total number 

of packets actually transmitted by the users  and time 

slot .  We shall consider the cost of transmitting 

packets at time slot  to be of the type  

   

Where  

 
A5:  is continuously differentiable with respect to  

 
A6:  is zero when  is zero.  

 Additional assumptions concerning the time function  

are 

T1 : Each user gets m number of instances called discrete 

time slots 

T2 : Flow of packets is continuous which implies that 

there is no congestion in the system. 

T3 : Users can transmit more than one packet on the link at 

the same time slot. They must obey the capacity 

constraint (P5) and non-negative constraint (P1). 

Also we consider that the game will not be over until all the 

packets are transmitted and fixed number of the time slot is 

over. And hence the efficiency of user is measured by the 

term unit cost which depends on the total cost, number of 

packets and time slots. i.e. 

 

Mathematical expression of the above formula is 

  

 

and  

Now  

 

 

B.  Nash equilibrium point 

According to [9] , “ A Nash equilibrium is a profile of 

strategies such that each player’s strategy is an optimal 

response to the other player’s strategies”. In other words, 

NEP is the stability point of the game in which no user finds it 

beneficial to change its strategies.   

In this paper, we assume that user 1 and 2 will transmit 

their packets in different time slot such that the combination 

becomes optimal for the user. If  and are the costs for 

user 1 and 2 respectively and the strategies of them are 

denoted by the collection and 

, then the combination of strategies 

 for user 1 and  for user 

2 is a Nash Equilibrium Point provided 

 
for all possible strategies of user 1 and   

 
for all possible strategies of user 2. 

We start our investigation with the conditions that needs 

to be satisfied by cost functions in order to guarantee the 

Nash equilibrium point. 

C.  Optimization and Existence of NEP 

The Kuhn- Tucker conditions are simply the first order 

conditions for a constrained optimization problem.  
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Let  be continuously 

differentiable functions and let . We want to 

characterize those vectors  that satisfy 

(*)    is a solution of the problem  

Maximize  subject to  

i.e subject to   and  

 
The Kuhn-Tucker conditions are the first order conditions 

that characterize the vectors  that satisfy 

(*)  such that  

(KT1)  For  

 
(KT2)  For  

 
Where the partial derivatives are evaluated at  . 

D. Implementation of Kuhn-Tucker Condition in the 

model 

The cost function be continuously 

differentiable function in which n=1,2 and m total number of 

time slots. 

) is the solution of the 

problem  

Minimize   

where  

If  

 
 

 
 

Also if  

   (7) 

Inequality (7) satisfies because to satisfy the throughput 

demand of users, it is not possible to have all possible 

strategies and .  

The Kuhn-Tuckar conditions given by (6) and (7) 

constitute the necessary and sufficient condition for a feasible 

solution to be a Nash Equilibrium Point. 

Another important theorem, which helps to prove the 

existence of Nash Equilibrium point, is the Kakutani’s Fixed 

Ponit Theorem. This theorem states: 

“Let be closed, bounded, and convex. For every 

 let  be a non-empty, convex subset of X. Assume 

that the graph of the set- valued function is closed in . 

Then there exists a point  such that ” 

The existence of a Nash Equilibrium is equivalent to X 

having a fixed point.Kakutani's fixed point theorem 

guarantees the existence of a fixed point if the following four 

conditions are satisfied. 

1. The domain is compact, convex, and nonempty.  

2. F(x) is nonempty.  

3. F(x) is convex.  

4. F(x) is continuous.  

For the existence of Nash equilibrium point, we define the 

cost function which is continuous, convex and its domain is 

bounded and closed. 

V. CLASSES OF COST FUNCTION 

The expected cost for the user  at time slot depends on 

the number of packets  to be routed by user n and total 

number of packets  by both users, which can be expressed 

as below 

 
 We analyze several classes of cost functions which satisfy 

equation (6) and (7) and general properties of cost function 

describe in section 4.1.  

A.  Exponential Cost Function 

 We consider the exponential cost function, which 

increases with time slot  and exponentially increases with 

. For a fixed , the cost function  depends on  . 

Let the form of exponential cost function be 

 
Here the time function  is the square root of time slot 

(or instance). 

Hence the total cost of user n to send its data packets 

through the link is         

 

B. Non- Linear Cost Function 

 We consider the Nonlinear cost function, which increases 

with time slot  and .Where a is any positive integer 

such that .  For a fixed , the cost function  depends 

on  . Let the form of the nonlinear cost function is  

 

 
Again we assume that the time function  is the square 

root of time slot (or instance). 

Hence the total cost of user n to send its data packets 

through the link is 

 
  

 
Fig 1: Curve of different cost functions 
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VI.   CONDITION OF CONVEXITY   

In the preceding section IV the general assumptions of 

cost function define it as a continuous differentiable of type  

 
The following theorems establish the existence of Nash 

Equilibrium Point for the cost function. 

Theorem 1: In a communication network cost function 

 for each time slot, defined as (1) is convex.  

Proof :  To prove that cost function  is convex we will use 

following theorem (by [7]) 

“A function   is convex if the Hessian matrix 

is positive semi definite. If  is positive 

definite, the function   will be strictly convex.” 

 

 By equation (1) cost function can be expressed as  

 
 

For a fixed time slot,  is constant, therefore  (for 

simplicity consider ) will be a function of two 

variables  ,therefore the Hessian Matrix for C is 

 
The following theorems establish the existence of Nash 

Equilibrium Point for the exponential cost function. 

(Similarly we can prove these theorems for Non-Linear cost 

function.) 

Verification of condition: In a communication network cost 

function 

for each time slot, defined as (8) is convex.  

 By equation (8) cost function can be expressed as  

 
For a fixed time slot,  is constant, therefore  (for 

simplicity consider ) will be a function of two 

variables  ,therefore the Hessian Matrix for C is 

 
Case I: When  

 
Let  

 

 

 

 
Now Hessian Matrix  

 

 

 
  

Case II: When  

 

   

Therefore which is non-negative. 

Since  is positive definite in all cases therefore the 

function  will be strictly convex for each time slot. 

 The cost function for each  is convex and 

compact. Therefore by Kakutani Fixed Point Theorem there 

exists a fixed point and such a point will be Nash equilibrium 

point. 

VII. CONDITION FOR FEASIBLE AND 

UNFEASIBLE SOLUTIONS   

We can obtain the general condition for feasible and 

unfeasible solutions, which will be applicable for all classes 

of cost functions.  

If   I.e. both 

users transmit their throughput demand completely then the 

strategy sets  are 

called points for the feasible solution of cost function 

otherwise the solution will be non feasible. 

A.  Condition for Nash Equilibrium Point  

If    then all data packets will be transmitted 

without any penalty and hence cost of data transmission will 

be less than any other combination of  i.e. condition 

(4) and (5) will satisfy. Mathematically this situation can be 

expressed as 

 
Now the cost function becomes  

 

 
 (in case of Exponential cost function ) 

 
     (in case of Non- linear cost function ) 
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VIII.  MULTIPLE NASH EQUILIBRIUM POINT  

Many games have more than one Nash equilibrium point. 

Two games the “Battle of the sexes” and the “Prisoner’s 

Dilemma Game” are very popular games with multiple Nash 

Equilibrium points and they are discussed in [8] and [9]. In 

case of multiple Nash equilibrium point, we select a point 

which is better than all other NEP, called Pareto optimal 

point.    

Pareto optimality is a state of game where resources are 

allocated in the most efficient manner. In other words, Pareto 

optimality is a set of conditions under which the state of 

economic efficiency (where no one can be made better off by 

making someone worse off) occurs. 

The model describes in this paper presented a game with 

multiple Nash equilibrium points. By [8], the best situation is 

when a game has single Nash equilibrium. If there are 

multiple Nash equilibrium, then there is some hope that only 

one of them is admissible.   

A. Focal Points and Pareto Optimality  

How should the users behave, when there are multiple 

Nash equilibrium points? Which strategies are best for both 

users? How users can identify the strategy which gives Pareto 

Optimal solution? With the help of the concept of focal points 

some of these questions can be answered. The concept of the 

focal points and Pareto optimality is discussed in [9]. 

The theory of “Focal Points” was introduced by 

Schelling’s (1960). This theory suggests that in some “real 

life” situations players may be able to coordinate on a 

particular equilibrium by using information that is abstracted 

away by the strategic form. The example described in [9] can 

easily explain the Focal point. In this example, two players 

are asked to name an exact time, with the promise of a reward 

if their choices match. Both players will try to match their 

choices. In order to  this they will speak some common time 

like  “12 noon”, “1:00 p.m.”, “2:30 p.m.” etc. which are  focal 

points for this game but “1:43 p.m.”, “2:17 p.m.” etc. are not. 

The “Focalness” of various strategies depends on the 

players/user’s past experiences and information provided to 

him/her.  

Now we will try to find out the answers of the following 

questions based on our network communication model.  

1.  What should be the focal point for the user? 

2. Can we get a Pareto optimal solution using these focal 

points? 

3.  How can we express it mathematically?    

From section 3 , We have  and  as throughput 

demands of user 1 and user 2 respectively. Both users want to 

transmit their throughput demand in m time slots over a link 

with capacity  . Using equation (6), the optimal solution to 

the problem can be achieved when 

 . If some     and  

 then obviously   . This shows 

that the user will transmit its data in the next time slot but cost 

function is directly proportional to the time slot and hence 

cost increases as  increases. 

Both users want to minimize the cost of transmission, 

therefore they will prefer the strategy in which 

. That means first they will focus 

on the strategy set having all nonzero elements. Now there 

may be number of strategy sets which satisfy this nonzero 

condition, so the next object is to find the focal points from 

these sets. 

 
Fig 2: Relation between different strategies 

From equation (1), we have assumed that cost is an 

increasing function of time slots and the number of packets in 

an intermediate strategy set which is directly related to the 

planned strategy set. This implies that the cost function 

increases with time slot and number of packets in the planned 

strategy set. Therefore the best option for the user is to plan to 

route same or nearly the same number of packets in each time 

slot. This statement can also verify with the special principle 

of Discrete Mathematics named as “Extended Pigeonhole 

Principle”. The Extended pigeonhole principle states that : 

 “If n pigeons are assigned to m pigeonholes (The number 

of pigeons is very large than the number of pigeonholes), then 

at least one of the pigeon holes must contain  

 pigeons.” 

 We can conclude from the above statement that almost all 

pigeonholes contain  pigeons and some 

pigeonholes contain one more pigeon than other pigeonholes. 

It depends on the number of pigeonholes and number of 

pigeons. 

 Each user can use this principle to find focal points from 

all possible planned strategy set. In this case number of time 

slots m will be considered as pigeonholes and throughput 

demand will be considered as pigeons. Therefore in every 

slot, the user can transmit at least  

packets and  in some time slot he/she can 

transmit  packets. Now we will try to 

find the number of time slots that contains 

 packets. 

 = Throughput demand of user n 

  = Number of time slots 

In a time slot at least   packets can be 

transmitted. 
Therefore in m time slots at least  can be 

transmitted Remaining packets = 

 

Finally, the user n transmits  packets in  

 time slots. This kind of 

distribution of packets will give the focal points to the user.  

 The user can get so many combinations from m time slot 

which contain  packets. All these 
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combinations will be the focal points for the user or user can 

decide planned strategy set based on these focal points. 

 The user can get benefit to choose first 

 slots to transmit 

 packets. In other words if the user 

transmits   packets in the starting time 

slots then the cost will be minimum for that user. 

 Again we have two users in this game and the link capacity 

 is fixed. If both users follow above stated rule to find 

minimum cost there may be a violation of capacity constraint 

and this combination will not produce a Nash equilibrium 

point in the game and hence it will not be the solution of the 

game. 

 Now we think about the social optimal point i.e. The 

“Pareto optimal point”. In spite of minimizing cost of user 1 

or user 2, let us try to minimize the cost of network or 

improve the performance of the network which is possible 

only at the Pareto optimal point. 

B.  Procedure to find the Pareto optimal point  

 Let throughput demand of the first user be greater than the 

second user i.e.   and demands of both users can 

satisfy by the link with capacity  in m time slot. 

Mathematically   . Also consider that   

 

 
 For the Pareto optimal point  the first user should transmit 

 packets in 1 to   time slots and  packets in  

 to m time slots. Similarly the second user should 

transmit packets  in 1 to  time slots and  packets  

in   to m time slots. Mathematically above scheme can 

be expressed as 

 

 
Similarly for second user  

 
Illustrative Examples 

We present three examples to illustrate the solution approach 

described in previous sections. 

Example 1: Unequal and Even number of demands 

 Consider a communication network with two nodes 

connected with a single link and two users. Let the link 

capacity is  and time slots  i.e. in these 5 time 

slots both users can transmit 30 packets together. Assume 

that throughput demand of user 1 ( ) is 18  and 

throughput demand of user 2 ( ) is 12. These demands 

satisfied the condition  

Now we will try to find the number of ways by which user 1 

and user 2 can transmit their 18 and 12 packets respectively in 

5 different time slots over the link with capacity 6. 

For user 1, we have 1190 ways to transmit 18 packets in 5 

time slots over the link. Similarly there are 1190 ways for 

user 2 to transmit 12 packets in 5 time slots over the link. If 

both users transmit their packets simultaneously then total 

number of possible combinations is  

 
i.e all possible strategy set contains 14,16,100 elements, 

but all these combinations are not feasible. Now the question 

may arise that “How many combinations are feasible from 

this set?” 

To answer this question we can use the concept of NEP 

and equation (10) discussed in the previous section. In which 

we have  

 
This show that if planned strategy set become an actual 

strategy set for both users then all packets will be transmitted 

smoothly in each time slot. 

For every point in all possible strategy set of user 1, user 2 

has a strategy which satisfies the equation (8) and vice versa. 

Hence we get 1190 Nash equilibrium points. This can be 

explained in the following table: 

 
S. 

No. 

Planned strategy set 

of User1 for 18 

packets 

 

Planned strategy set 

of User2 for 12 

packets  

 

Packets 

transmitted 

in each  time 

slot 

1    
2    
3    
: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

Table 1: different combination of strategies 

Next step is to find focal points for both users from 1190 

Nash equilibrium points. We will use the Extended 

Pigeonhole principle described in the previous section.  

 
For user 1 

 
And  

This implies that user 1 should transmit 3 packets in 2 time 

slots and 4 packets in 3 time slots. Similarly we can calculate 

condition to obtain focal points for user 2 also. For user 2, it 

will be 2 packets in 3 time slots and 3 packets in 2 time slots. 

There will be 10 permutations which satisfy the condition 

stated above. These permutations, respective cost of the 

individual user and the cost of the network are shown below: 

S. 

No 

Planned 

strategy of 

user1 and user2 

Cost for 

user 1   

 

Cost for 

user 2 

 

Total Cost 

of the  

network 

1 User1= 

{4,4,3,3,4} 

User 2= 

{2,2,3,3,2} 

320.47 100.94 421.41 

2 User1= 

{4,3,4,4,3} 

User 2= 

{2,3,2,2,3} 

323.30 99.90 423.20 

3 User1=  

{4, 3,3,4,4} 

340.69 93.50 434.19 
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User 2=  

{2, 3,3,2,2} 

4 User1= 

{3,4,4,4,3} 

User 2= 

{3,2,2,2,3} 

337.59 94.64 432.23 

5 User1= 

{3,4,3,4,4} 

User 2= 

{3,2,3,2,2} 

354.99 88.24 443.23 

6 User1= 

{4,4,4,3,3} 

User 2= 

{2,2,2,3,3} 

303.08 107.34 410.42 

7 User1= 

{4,4,3,4,3} 

User 2= 

{2,2,3,2,3} 

312.33 103.94 416.27 

8 User1= 

{4,3,4,3,4} 

User 2= 

{2,3,2,3,2} 

331.44 96.90 428.34 

9 User1= 

{3,4,4,3,4} 

User 2= 

{3,2,2,3,2} 

345.74 91.64 437.38 

10 User1= 

{3,3,4,4,4} 

User 2= 

{3,3,2,2,2} 

365.96 84.20 450.16 

Table 2: Strategies of user 1& 2 and their cost 

All above 10 combinations are focal points for both users. 

Using these focal points we can find the Pareto optimal point 

in this game. The minimum cost of the network can be 

obtained using 6
th

 strategy set which will be the Pareto 

optimal point.  

Note that this strategy set does not generate a minimum 

cost for the user with less throughput demand, though it 

generates minimum cost of the complete network.  

IX. CONCLUSION  

In this work, we attempted to present mathematical 

modeling of transmission in a communication network, using 

game theoretical concept with multiple chances available to 

users. The cost function involves the number of packets to be 

routed and time variables, in a non-linear fashion. Penalty to 

the users are also introduced in the cost function. We have 

proved theorems which show the existence of Nash 

equilibrium point in this non- cooperative game. We have 

obtained sufficient condition for the Nash equilibrium point. 

According to these conditions game have multiple Nash 

equilibrium points. We developed a procedure to find Pareto 

optimal point from these multiple Nash equilibrium points. 

The examples also demonstrated based on that procedure.  

Despite the results accomplished so far, there is space for 

more detailed investigation for multiuser; complex network 

with non-symmetrical links (i.e. links with different speed). 

Furthermore, different demands and different source and 

destination seem to play a critical role in this packet 

transmission that has not been investigated in detail yet. 
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