Traffic Management Using Swarm Intelligence and Route Selection Using Android Application

Santwana Panda, Anjali M. Patki, Kedar Hushing

Abstract — With the ever increasing traffic demand, congestion has become a serious problem in many major cities around the world. This paper deals with the traffic congestion and also provides the citizen an alternate, less congestion route for their travel, thus in turn saving a lot of time, fuel and also control pollution. Swarm intelligence is implemented in this paper. The embedded system using swarm intelligence proposed in this paper captures images of the traffic and analysis their behavior according to the surrounding and redirects the traffic in different routes so that congestion in each routes will decrease. One more new feature is added that is android application designed through App-Inventor that helps to locate the least congestion route for a traveler based on his or her destination.

Index Terms — App-Inventor, Embedded System, Swarm Intelligence, Traffic Congestion.

I. INTRODUCTION

Swarm Intelligence (SI) describes the collective behavior of decentralized, self-organized systems. It is the technique wherein several decentralized intelligent independent units function and aid each other in task. SI provides a basis with which it is possible to explore collective (or distributed) problems solving without centralized control or the provision of a global model. Many units can function in tandem, reducing load and increasing efficiency. This also removes the need for a central server. In SI there are several units working together, helping each other without any central control over them.

For every square there will be four signals and each will be equipped with a camera. Cameras will take snapshots of the traffic and directly send to cloud for storage. From cloud the images will be used to detect the intensity of traffic at each junction. Through edge detection process intensity on incoming traffic can be judged and the flow of traffic from each direction also can be estimated. Then through ARM7 microcontroller will direct the traffic lights according to traffic flow, for a limited number of vehicles the green light will glow for a more amount of time. This was the scenario for a single traffic square but for a the entire city swarm intelligence is used all traffic signals are interconnected through a network and through swarm intelligence flow of traffic is control adaptively and directed to different routes in order to minimize congestion at every signal. So for a smart city this traffic management can be applicable.

Through App-Inventor using block programming an android application is designed through which we can get updates about the traffic congestion on each route, so that we can select the best route for our travel.

II. RELATED WORK

Some of the optimization technique for the road network management proposed by the researchers is grouped below, along with their strength and limitations.

A. Graph Theory Based

The classical minimum shortest route algorithm such as Dijkstra algorithm, Priority queues, bidirectional search etc. are used by many research for road traffic management [1]. Appert et al. [2] utilized graph theory for the measuring urban road network vulnerability. Baruah and Baruah [3] proposed cut-set of graph for the traffic control problem. As the complexity of traffic control on network expansions it becomes more complicated to coordinate the actions of the large number of heterogeneous traffic management instruments that are available in the network. One way of handling this complexity is to divide the coordination problem into smaller coherent sub-problems that can be solved with a minimum of interaction. Multi agent systems can aid in the distribution of the problem (over the various agents that comprise the multi agent system) and facilitate the coordination of the activities of these agents when required. In the literature no consensus exists about the best configuration of the traffic managing multi agent system and how the activities of the agents that comprise the multi agent system should be coordinated [4]. Katwijk et al. [4] reported a test bed for multi agent control systems in road traffic management that can deals the traffic managing multi agent system can be configured, evaluated in a realistic simulated traffic environment, easily transferred to a real world application. Raza and Rao [5] proposed agent based urban traffic and transportation control. This paper gives a theoretical foundation of an intelligent traffic clouds.

B. Genetic Algorithm based

Genetic Algorithms (GAs) have been demonstrated to be a promising search and optimization technique. It has been successfully applied to system identification and a wide range of applications including filter design, scheduling, routing, control, and others. For applying GAs to complex problems has been the high computational cost due to their slow convergence rate is one of the main obstacles. Han and Tabata [6] combined a genetic algorithm and controlling lethal gene for solving of the vehicle routine problem but the performance for the practical example was not investigated. Meshkat and Vrancken [7] used multi objective technique for the road network partitioning. This study fast and elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and
Pareto Archived Evolution Strategy (PAES) were implemented. Jiang et al. [8] proposed an agent model with adaptive weight based multi-objective algorithm to manage road-network congestion problem. The aim of this study was to construct a quantitative index series to describe the road network congestion distribution, and use such indexes as weights in the multi-objective algorithm to shunt vehicles on those congested links. In the first phase, a multi-agent system was built, where each agent stands for a vehicle that adapts its route to real-time road network congestion status by a two-objective optimization process: the shortest path and the minimal congested degree of the target link. The agent-based approach captures the nonlinear feedback between vehicle routing behaviors and road-network congestion states. Next, a series of quantitative indexes was constructed to describe the congested degree of nodes, and such indexes were used as weights in the two objective functions which were employed by the agents for routing decisions and congestion avoidance.

C. Fuzzy Logic Based

The fuzzy logic appeared in 1965 by Zadeh introducing the concept of fuzzy sets. It was shown as a very capable mathematical approach for dealing with subjectivity, ambiguity, uncertainty, and imprecision [13]. Fuzzy logic was used as a framework to solve transportation problems such as traffic assignment problem, accident analysis and prevention, traffic control at roads intersection, and traffic light control. During the last decade, some developments in information acquisition technologies through advanced traveler information systems have been done. However, many contextual factors (such as departure time, travel distance, usual driving speed of the driver, weather information, personal preferences, roadwork information, and other information which could be available to the guidance systems in real-time) increase the uncertainty of the itinerary choice. Ridwan [22] used choice function based fuzzy preferences relations and considered the spatial knowledge of individual drivers. This method strengthened the travel decision by fuzzy preference relations but it utilized small number of influence factors and in real scenario there are multiple influence factors. Hawas [23] estimated the route utility by using neurofuzzy data training with a hidden neuron in each fuzzy process. This method used adaptive to the variation of perceptions from drivers but there is no fuzzification training not exist. Arslan and Khisty [24] developed route choice model. They utilized hybrid model based on fuzzy logic and analytical hierarchy process. The preference was extracted from driver’s psychology. Ghatee and Hashemi [25] proposed quasi logist formula based algorithm for traffic assignment. It maximizes the level of certainty and minimizes the perceived travel delays. The limitation of this study is no results for real networks. Balaji and Srinivasan proposed multi agent system based on type-2 fuzzy decision module for urban traffic management. This method reduces the total delay of vehicles and it was simulated on real traffic of Singapore. The limitation of this method is unavailability of vehicle route guidance. Kammoun et al. [9][10] proposed an adaptive multi agent system based on the ant colony behavior and the hierarchical fuzzy model. This system allows adjusting efficiently the road traffic according to the real time changes in road networks by the integration of adaptive vehicle route guidance system. This system was implemented and simulated under a multi agent platform in order to discuss the improvement of the global road traffic quality in terms of time, fluidity and adaptively.

D. Swarm Intelligence Based

The swarm intelligence has been used to model complex traffic and transportation processes. In fact, the self-organization of the social insects is based on relatively simple rules of individual insect’s behavior. Among the different colony insects, the ant colony succeeds to find food by following the path with highest pheromone quantity deposited by other ants [12]. The pheromone signal represents the communication tool between individual ants. It contributes to the formation of collective intelligence of social ant colonies that can be considered as multi-agent systems. Bertelle et al. [27] proposed road traffic management by using ant system for shortest path in weighted dynamic graph. This method utilized neural networks for traffic flow regulation and it simulated using multi agent platform. Yang et al. [28] proposed optimization model based on coarse-grain parallel ant colony algorithm for the bus network optimization. It was demonstrated on data of Dalian city, China but it did not consider the real time traffic management. Deng et al.[29] proposed hybrid particle swarm optimization algorithm by combining fluid neural network. This method is influenced by search best path in stochastic traffic networks and this method was simulated with only 20 nodes road network. D’Acierno et al. [30] proposed swarm intelligence algorithm to optimize the signal setting of each intersection for the asymmetric traffic assignment and it lacks on real time management. Garcia-Nieto et al. [31] used particle swarm intelligence to find cycle programs of traffic lights and implemented for 2 cities in Spain. Mostly, Ant Colony Optimization was used to solve transportation problems such as Travelling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), only few works based on swarm intelligence are developed to solve road traffic management problem [13]. In fact, the problem cannot be solved using the classic versions: artificial ants are able only to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the graph edges.

III. WORKING OF THE PROPOSED SYSTEM

Our aim is to develop the system at signals; this system will have multifunctional operations. Initially the system will measure the traffic density at different signals using image processing using edge detection and accordingly change the time delays for traffic lights viz. the side at which the traffic is high the signal will remain green for more time. Secondly it will also communicate with the adjacent junction signal. Both the signals will collectively manage the traffic depending on the density. So in the same way all signals of the city will communicate with each other forming a SWARM dedicated
system. Also send message to next signal when panic key is pressed using Wi-Fi module.

A. Edge Detection

Edge detection is an image processing technique for finding the boundaries of objects within images. It works by detecting discontinuities in brightness. Edge detection is used for image segmentation and data extraction in areas such as image processing, computer vision, and machine vision.[32]

There are many methods for edge detection but most of them can be grouped into two categories, search based and zero-crossing based [33]. Common edge detection algorithms include Sobel, Canny, Prewitt, Roberts, and fuzzy logic methods.

![Fig.1 Image segmentation using Sobel method][32]

![Fig.2 Image segmentation using Canny method][32]

![Fig.3 Image segmentation using Fuzzy Logic method][33]

B. MAX232

MAX 232 is the name of IC which is used for TTL to RS232 or RS232 to TTL conversion. To communicate serially between two devices, that devices must be TTL compatible. TTL compatibility means TTL logic levels (logic 1/ logic 0) must be same for both the devices. MAX232 converts TTL of 5v in to RS232 standard or RS232 standard in to TTL of 5v. Whereas MAX3232 converts TTL of 3.3v in to RS232 standard or RS232 standard in to TTL of 3.3v.

C. ARM7 Microcontroller

The original ARM7 was based on the earlier ARM6 design and used the same ARMv3 instruction set. The ARM710 variant was used in a CPU module for the Acorn Risc PC. This forms the core of our system, where decisions based on the inputs from the computer are made and respective LEDs are made to glow for desired time intervals. It also controls the Wi-Fi module which is responsible for the communication between the signals.

D. Wi-Fi Module (ESP8266)

ESP8266 offers a complete and self-contained Wi-Fi networking solution, allowing it to either host the application or to offload all Wi-Fi networking functions from another application processor. When ESP8266 hosts the application, and when it is the only application processor in the device, it is able to boot up directly from an external flash. It has integrated cache to improve the performance of the system in such applications, and to minimize the memory requirements. Alternately, serving as a Wi-Fi adapter, wireless internet access can be added to any microcontroller-based design with simple connectivity through UART interface or the CPU AHB bridge interface.

E. LED Panel

The LED panel forms the visual part of the system which will direct the traffic flow. The LEDs are controlled by the micro-controller and based on its control action.

F. LCD Display

LCD display is used to display messages to the public in case of emergencies or suggestions for alternate routes. It can also be used to display the general traffic conditions of the next signal so that the drivers can decide their routes wisely.

G. Android Phone

Android phone is used to receive the traffic updates so that we can select the best route for our faster travel. Block programming is written using App-inventor through which our android phone can measures the less congestion routes and display them on our screen.

App-Inventor is a open source web application designed by Google. It uses a graphical interface, very similar to Scratch and the StarLogo TNG user interface, which allows users to drag-and-drop visual objects to create an application that can run on Android devices. In creating App Inventor, Google drew upon significant prior research in educational computing, as well as work done within Google on online development environments.
IV. APPLICATION

A. Smart City

A smart city uses information and communication technologies (ICT) to enhance quality, performance and interactivity of urban services, to reduce costs and resource consumption and to improve contact between citizens and government. Sectors that have been developing smart city technology include government services, transport and traffic management, energy, health care, water and waste. Smart city applications are developed with the goal of improving the management of urban flows and allowing for real time responses to challenges. A smart city may therefore be more prepared to respond to challenges than one with a simple ‘transactional’ relationship with its citizens. Other terms that have been used for similar concepts include ‘cybergville’, ‘digital city’, ‘electronic communities’, ‘flexicity’, ‘information city’, ‘intelligent city’, ‘knowledge-based city’, ‘MESH city’, ‘telecity’, ‘teletopia’, ‘Ubiquitous city’, ‘wired city’.

B. Direction of Management of Traffic

In addition to the earlier method of traffic congestion detection, one more method can be used. A server can be maintained which can receive certain crucial data calculated by the Controller of the signals. The main aim is to implement a system that would trace the travel time of individual cars as they pass the roadside controllers and compute an average trip time using a rule-based system to decide whether the area is congested or uncongested. If congestion is sensed then system would control traffic signals / generate automatic re-routing messages to selected approaching vehicles.

C. Automatic Detection of Speed

We can use this technique to calculate the speed of a motorist and to detect if he violates the prescribed/set speed limit. If the motorist violates the rule, a warning message will be sent to the motorist via audio and/or video interface and penalty will be calculated in the server and billed monthly to the vehicle owner.

D. Automatic Billing

Automatic toll collection and automatic —core area charge collections are also done using the same framework. Controller unit will be placed at toll-booth and along the motor able roads around the core area which will detect each individual vehicle uniquely within its zone by capturing their device ids and will keep records of the time during which the vehicle was seen by those Controllers within its reading zone. This information will be sent to a main server. Accordingly the main server will calculate the charges and raise bills against the vehicle ids.

E. Selection of Less Congestion Route

Through our android phone we can select the less congestion routes for our travels. This feature has been included in the above proposed system.

V. FUTURE SCOPE

The major application is the traffic management of a smart city. Further the image processing could be replaced by video processing for more accurate results. Data on cloud server could be used for analysis of behavioral pattern followed at different signals so help in reducing traffic congestion for effectively and within stipulated time.

VI. CONCLUSION

This paper has fairly tried to project the concept of dealing with traffic congestion in a smart city. It introduces us to the vast world of image processing, which is used in several modern day applications. Endeavour has been made to touch every field the device can be related to like designing, programming involved, circuitry, construction, working and application. It highly reduces the modern day problem of traffic congestion that we are facing today.

REFERENCES

[32] www.matlab.com

[33] www.wikipedia.com

AUTHOR’S PROFILE

Santwana Panda received her B.E under Electronics and Telecommunication from MIT in the year 2014. She is wowing towards her M.E degree under communication network from Indira College of Engineering and Management. She attended National Level UG conference-2014 on Emerging Trends in E&TC engineering in Pune and presented the paper entitled as “FPGA based design and implementation of convolutional encoding and viterbi decoding techniques”.

Anjali M. Patki, Prof & H.O.D., E&TC Department, Indira College Of Engineering & Management has a teaching experience of more than 12 years and expert in the domain of communication engineering.

Kedar Hushing founder and director of Axis Technologies- A high-end technology Solution Company has a working experience of more than 10 years in the field of embedded systems and microcontroller.