
 

 

 

ISSN: 2277-3754 

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 5, Issue 3, September 2015 

DOI:10.17605/OSF.IO/2KZV9 Page 157 
 

Thermal Stress Analysis of a Thick Hollow 

Cylinder 
S.S. Singru, Sachin Chauthale and N. W. Khobragade 

 

Department of Mathematics, MJP Educational Campus, 

RTM Nagpur University, Nagpur 440 033, India. 

       Abstract-In this paper, an attempt has been made to study 

thermoelastic response of a direct thermoelastic problem of a 

hollow cylinder occupying the space 

,0,: hzbraD   with radiation type boundary 

conditions. We apply integral transform technique to find the 

thermoelastic solution.  
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I. INTRODUCTION 

Khobragade et al. [2-18] have investigated temperature 

distribution, displacement function, and stresses of a thin 

as well as thick hollow cylinder and Khobragade et al. 

[13] have established displacement function , temperature 

distribution and stresses of a semi-infinite cylinder.  

In the present paper, an attempt is made to study the 

theoretical solution for a thermoelastic problem to 

determine the temperature distribution, displacement and 

stress functions of a hollow cylinder with boundary 

conditions  occupying the space 

}0,)(:),,{( 2/1223 hzbyxaRzyxD  , 

where 
2122 )( yxr  . A transform defined by 

Zgrablich et al. [2] is used for investigation which is a 

generalization of Hankel’s double transform and used to 

treat the problem with radiation type boundaries 

conditions.  

 

II. FORMULATION OF THE PROBLEM 

Consider a hollow cylinder as shown in the figure 1. 

The material of the cylinder is isotropic, homogenous and 

all properties are assumed to be constant. We assume that 

the cylinder is of a small thickness and its boundary 

surfaces remain traction free. The initial temperature of 

the cylinder is the same as the temperature of the 

surrounding medium, which is kept constant.  

The displacement function ),,( tzr  satisfying the 

differential equation as Khobragade [2] is 

Ta
zrrr

t































1

11
2

2

2

2

              (1)                                                                                              

with 0  at ar   and br                                           (2) 

where  and ta  are Poisson ratio and linear coefficient 

of thermal expansion of the material of the cylinder 

respectively and ),,( tzrT  is the heating temperature of 

the cylinder at time t  satisfying the differential equation 

as Khobragade [2] is 
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where cρKκ /  is the thermal diffusivity of the 

material of the cylinder, K  is the conductivity of the 

medium, c  is its specific heat  and   is its calorific 

capacity (which is assumed to be constant) respectively, 

subject to the initial and boundary conditions  

FTMt )0,0,1,(    for all  bra   , hz 0    (3) 

),(),,1,( 11 tzFakTM r  , for all  hz 0  ,   

                                                    0t                           (4) 

),(),,1,( 22 tzFbkTM r   for all  hz 0  ,    

                                                     0t                           (5)            

),(),,1,( 33 trFhkTM z    for all  bra   ,  

                                                     0t                          (6)                                 

),(),,1,( 4 trGhkTM z   for all  bra   , 0t     

                                                                                     (7)         

being: 
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Where the prime ( ^ ) denotes differentiation with respect 

to  ,  radiation constants are k  and k  on the curved 

surfaces of the plate respectively.  

The radial and axial displacement U and W satisfy the 

uncoupled thermoelastic equation as Khobragade [2]  are  
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The stress functions are given by 

0),,( tzarz , 0),,( tzbrz , 0),0,( trrz      

                                                                                     (13)                                                                                         

1),,( ptzar  , or ptzb ),,( , 0),0,( trz  

                                                                                     (14)                                                                                                         

where 1p  and op  are the surface pressure assumed to 

be uniform over the boundaries of the cylinder. The stress 

functions are expressed in terms of the displacement 

components by the following relations as Khobragade [2] 

are 
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where )21/(2   G  is the Lame’s constant, G  is the 

shear modulus and U, W are the displacement 

components.  

Equations (1)-(18) constitute the mathematical 

formulation of the problem under consideration. 

 
Fig 1: Geometry of the problem 

III. SOLUTION OF THE OF THE PROBLEM 

Applying transform defined in [2] to the equations (3), 

(4) and (6) over the variable r  having 0p  with 

responds to the boundary conditions of type (5) and 

taking the Laplace transform , one obtains  
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where constants involved ),,(* sznT  are obtained by 

using boundary conditions (6). Finally applying the 

inversion theorems of transform defined in [2] and 

inverse Laplace transform by means of complex contour 

integration and the residue theorem, one obtains the 

expressions of the temperature distribution ),,( tzrT  for 

heating processes as 
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Where n is the transformation parameter as defined in 

appendix, m is the Marchi-Fasulo transform parameter.  

IV. DETERMINATION OF DISPLACEMENT 

AND STRESS FUNCTION 

Substituting the value of temperature distribution from 

(21) in equation (1) one obtains the thermoelastic 

displacement function ),,( tzr as 
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Using (22) in the equations (11) and (12) one obtains 
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Substitution the value of (22), (23) in (16) to (19) one 

obtains the stress functions as 
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V.  SPECIAL CASE 

Set )()1(),( 0rretrf t                                  (29) 

Applying finite transform defined in Marchi Zgrablich [2] 

to the equation (29) one obtains 
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Substituting the value of (29) in the equations (21) to (28) 

one obtains 
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VII. NUMERICAL RESULTS 

Set, a = 1, b = 2, h = 2,t  = 1sec  5.1 and k= 0.86   

in equations (22) we get 
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VIII. CONCLUSION 

In this chapter, we modify the conceptual idea 

proposed by Khobragade et al [2] for hollow cylinder and 

the temperature distributions, displacement and stress 

functions at the edge hz   occupying the region of the 

cylinder ,bra  hz 0  have been obtained 

with the known boundary conditions.  We develop the 

analysis for the temperature field by introducing the 

transformation defined by Zgrablich et al, finite Fourier 

sine transform and Laplace transform techniques with 

boundaries conditions of radiations type. The series 

solutions converge provided we take sufficient number of 

terms in the series. Since the thickness of cylinder is very 

small, the series solution given here will be definitely 

convergent. Assigning suitable values to the parameters 

and functions in the series expressions can derive any 

particular case. The temperature, displacement and 

thermal stresses that are obtained can be applied to the 

design of useful structures or machines in engineering 

applications. 
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