Thermal Stresses of a Hollow Cylinder due to Heat Generation

Ritesh Ganar; A. A. Navlekar; R. T. Walde and N. W. Khobragade
Department of Mathematics, MJP Educational Campus,
RTM Nagpur University, Nagpur 440 033, India

Abstract- In this paper, an attempt has been made to study thermoelastic response of an inverse thermoelastic problem of a hollow cylinder occupying the space

\[D: a \leq r \leq b, \ 0 \leq z \leq h, \] with radiation type boundary conditions. We apply integral transform technique to find the thermoelastic solution.

Keywords: Thermo elastic Response, hollow cylinder, Thermal Stresses, inverse problem.

I. INTRODUCTION
Khobragade et al. [2-18] have investigated temperature distribution, displacement function, and stresses of a thin as well as thick hollow cylinder and Khobragade et al. [13] have established displacement function, temperature distribution and stresses of a semi-infinite cylinder.

In the present paper, an attempt is made to study the theoretical solution for a thermoelastic problem to determine the temperature distribution, displacement and stress functions of a hollow cylinder with boundary conditions occupying the space

\[D = \{(x, y, z) \in \mathbb{R}^3: a \leq (x^2 + y^2)^{1/2} \leq b, \ 0 \leq z \leq h \}, \]

where \(r = (x^2 + y^2)^{1/2} \). A transform defined by Zgrablich et al. [2] is used for investigation which is a generalization of Hankel’s double radiation finite transform and used to treat the problem with radiation type boundaries conditions.

II. FORMULATION OF THE PROBLEM
Consider a hollow cylinder as shown in the figure 1. The material of the cylinder is isotropic, homogenous and all properties are assumed to be constant. We assume that the cylinder is of a small thickness and its boundary surfaces remain traction free. The initial temperature of the cylinder is of a small thickness and its boundary surfaces are assumed to be constant. We assume that the cylinder at time \(t \) satisfying the differential equation as Khobragade [2] is

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} - \frac{g(r, z, t)}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}
\]

(2)

where \(\kappa = K / \rho c \) is the thermal diffusivity of the material of the cylinder, \(K \) is the conductivity of the medium, \(C \) is its specific heat and \(\rho \) is its calorific capacity (which is assumed to be constant) respectively, subject to the initial and boundary conditions

\[
M_1(T, 1, 0, 0) = F(r, z) \quad \text{for all} \quad a \leq r \leq b, \quad 0 \leq z \leq h
\]

(3)

\[
M_1(T, 1, k_1, a) = F_1(z, t), \quad \text{for all} \quad 0 \leq z \leq h, \quad t > 0
\]

(4)

\[
M_2(T, 1, k_2, b) = F_2(z, t), \quad \text{for all} \quad 0 \leq z \leq h, \quad t > 0
\]

(5)

\[
M_3(T, 0, 1, 0) = F_3(r, t) \quad \text{for all} \quad a \leq r \leq b, \quad t > 0
\]

(6)

\[
M_3(T, 0, 1, \xi) = F_4(r, t) \quad \text{for all} \quad a \leq r \leq b, \quad t > 0
\]

(7)

\[
M_1(T, 1, 0, h) = G(r, t), \quad (\text{Unknown}) \quad \text{for all} \quad a \leq r \leq b, \quad t > 0
\]

(8)

being:

\[M_g(f, k, f, k, g) = (k \ f + \ k \ \hat{f}) g = g \]

where the prime (’) denotes differentiation with respect to \(g \), radiation constants are \(k \) and \(\tilde{k} \) on the curved surfaces of the plate respectively. The radial and axial displacement \(U \) and \(W \) satisfy the uncoupled thermoelastic equation as Khobragade [2] are

\[
\nabla^2 U - \frac{U}{r^2} + (1 - 2\nu)^{-1} \frac{\partial e}{\partial r} \left(\frac{1}{2} \frac{\partial U}{\partial r} \right) a_t \frac{\partial T}{\partial r}
\]

(9)

\[
\nabla^2 W + (1 - 2\nu)^{-1} \frac{\partial e}{\partial z} = 2 \left(\frac{1 + \nu}{1 - 2\nu} \right) a_t \frac{\partial T}{\partial z}
\]

(10)

where
\[
e = \frac{\partial U}{\partial r} + \frac{U}{r} + \frac{\partial W}{\partial r} \quad (11)
\]

\[
U = \frac{\partial \phi}{\partial r},
\]

\[
W = \frac{\partial \phi}{\partial z} \quad (13)
\]
The stress functions are given by
\[
\tau_{rz}(a, z, t) = 0, \quad \tau_{rz}(b, z, t) = 0, \quad \tau_{rz}(r, 0, t) = 0
\]
\[
\sigma_r(a, z, t) = p_1, \quad \sigma_r(b, z, t) = -p_0, \quad \sigma_z(r, 0, t) = 0
\]
where \(p_1 \) and \(p_0 \) are the surface pressure assumed to be uniform over the boundaries of the cylinder.

\[\text{Fig 1: Geometry of the problem}\]

The stress functions are expressed in terms of the displacement components by the following relations as Kharbache [2] are
\[
\sigma_r = (\lambda + 2G) \frac{\partial U}{\partial r} + \lambda \left(\frac{U}{r} + \frac{\partial W}{\partial r} \right) \quad (16)
\]
\[
\sigma_z = (\lambda + 2G) \frac{\partial W}{\partial z} + \lambda \left(\frac{U}{r} + \frac{\partial U}{\partial r} \right) \quad (17)
\]
\[
\sigma_\theta = (\lambda + 2G) \frac{U}{r} + \lambda \left(\frac{\partial U}{\partial r} + \frac{\partial W}{\partial z} \right) \quad (18)
\]
\[
\tau_{rz} = G \left(\frac{\partial W}{\partial r} + \frac{\partial U}{\partial z} \right) \quad (19)
\]
where \(\lambda = 2G\nu/(1-2\nu) \) is the Lame’s constant, \(G \) is the shear modulus and \(U, W \) are the displacement components. Equations (1)-(19) constitute the mathematical formulation of the problem under consideration.

III. SOLUTION OF THE OF THE PROBLEM

Applying March Zgrablich transform and finite Fourier cosine transform on equation one obtains
\[
\frac{d\bar{T}}{dt} + \alpha p^2 \bar{T} = \Psi \quad (20)
\]
This is a first order linear differential equation whose solution is given by
\[
\bar{T} = e^{-\alpha p^2 t} \left(\bar{F} + \int_0^t \Psi e^{\alpha p^2 t'} dt' \right)
\]
where \(p^2 = \mu_m^2 + \frac{n^2 \pi^2}{\xi^2} \)

&

\[
\Psi = \alpha \left[\frac{b}{k_2} S_0(k_1, k_2, \mu m, b) F_2 - \frac{a}{k_1} S_0(k_1, k_2, \mu m, a) F_1 + (-1)^n \bar{F}_4 - \bar{F}_3 \left(\frac{\bar{S}}{k} \right) \right].
\]

Applying inversion of Fourier cosine transform and Marchi-Zgrablich transform, one obtain the expression for temperature distribution and unknown temperature gradient respectively as
\[
T = \frac{2}{\xi} \sum_{m,n=1}^\infty S_0(k_1, k_2, \mu m, r) \cos \left(\frac{n \pi \xi}{\xi} \right) \times e^{-\alpha p^2 t} \left(\bar{F} + \int_0^t \Psi e^{\alpha p^2 t'} dt' \right) \quad (22)
\]
\[
G(r, t) = \frac{2}{\xi} \sum_{m,n=1}^\infty S_0(k_1, k_2, \mu m, r) \cos \left(\frac{n \pi \xi}{\xi} \right) \times e^{-\alpha p^2 t} \left(\bar{F} + \int_0^t \Psi e^{\alpha p^2 t'} dt' \right) \quad (23)
\]

Using equation (22) in (1) we get
\[
\phi(r, z, t) = \frac{r^2 \alpha t}{2 \xi} \left(\frac{1+\nu}{1-\nu} \right) \sum_{m,n=1}^\infty S_0(k_1, k_2, \mu m, r) \cos \left(\frac{n \pi \xi}{\xi} \right) \times e^{-\alpha p^2 t} \left(\bar{F} + \int_0^t \Psi e^{\alpha p^2 t'} dt' \right) \quad (24)
\]

Using equation (24) in (12) and (13) one obtains

\[U = a_n \left(\frac{1 + \nu}{1 - \nu} \right) \sum_{m=1}^{\infty} \frac{2rS_0(k_1, k_2, \mu_m r) + r^2 S_0'(k_1, k_2, \mu_m r)}{\mu_m} \]

\[\times \cos \left(\frac{n \pi r}{\xi} \right) e^{-\alpha r} \left[\tilde{F}' + \int_0^t \Psi e^{\alpha r} dt' \right]. \]

\[W = -\frac{n r^2 a_r}{2 \xi^2} \left(\frac{1 + \nu}{1 - \nu} \right) \sum_{m=1}^{\infty} S_0(k_1, k_2, \mu_m r) \sin \left(\frac{n \pi r}{\xi} \right) \]

\[\times e^{-\alpha r} \left[\tilde{F}' + \int_0^t \Psi e^{\alpha r} dt' \right]. \]

Using expressions (25) and (26) in (16) to (19) one obtains

\[\sigma_r = \frac{a_n}{2 \xi^2} \left(\frac{1 + \nu}{1 - \nu} \right) \sum_{m=1}^{\infty} \left[\left(\lambda + 2G \right) r^2 S_0'(k_1, k_2, \mu_m r) + 4rS_0(k_1, k_2, \mu_m r) \right] \]

\[+ \frac{\lambda}{2} \left(2r^2 - n^2 \pi^2 \right) S_0(k_1, k_2, \mu_m r) + rS_0'(k_1, k_2, \mu_m r) \]

\[\times \cos \left(\frac{n \pi r}{\xi} \right) e^{-\alpha r} \left[\tilde{F}' + \int_0^t \Psi e^{\alpha r} dt' \right]. \]

\[\sigma_z = -\frac{a_n}{2 \xi^2} \left(\frac{1 + \nu}{1 - \nu} \right) \sum_{m=1}^{\infty} \left[\left(\lambda + 2G \right) r^2 S_0'(k_1, k_2, \mu_m r) + 4rS_0(k_1, k_2, \mu_m r) \right] \]

\[- \frac{\lambda}{2} \left(2r^2 - n^2 \pi^2 \right) S_0(k_1, k_2, \mu_m r) + rS_0'(k_1, k_2, \mu_m r) \]

\[\times \cos \left(\frac{n \pi r}{\xi} \right) e^{-\alpha r} \left[\tilde{F}' + \int_0^t \Psi e^{\alpha r} dt' \right]. \]

\[\sigma_\theta = \frac{a_n}{2 \xi^2} \left(\frac{1 + \nu}{1 - \nu} \right) \sum_{m=1}^{\infty} \left[\left(\lambda + 2G \right) r^2 S_0'(k_1, k_2, \mu_m r) + 4rS_0(k_1, k_2, \mu_m r) \right] \]

\[+ \frac{\lambda}{2} \left(2r^2 - n^2 \pi^2 \right) S_0(k_1, k_2, \mu_m r) + rS_0'(k_1, k_2, \mu_m r) \]

\[\times \cos \left(\frac{n \pi r}{\xi} \right) e^{-\alpha r} \left[\tilde{F}' + \int_0^t \Psi e^{\alpha r} dt' \right]. \]

\[\tau_{r\theta} = -\frac{\lambda a_n}{2 \xi^2} \left(\frac{1 + \nu}{1 - \nu} \right) \sum_{m=1}^{\infty} n \left[\frac{2r}{2} S_0'(k_1, k_2, \mu_m r) + 2rS_0(k_1, k_2, \mu_m r) \right] \]

\[\times \cos \left(\frac{n \pi r}{\xi} \right) e^{-\alpha r} \left[\tilde{F}' + \int_0^t \Psi e^{\alpha r} dt' \right]. \]

\[\tau_{\theta z} = -\frac{\lambda a_n}{2 \xi^2} \left(\frac{1 + \nu}{1 - \nu} \right) \sum_{m=1}^{\infty} n \left[\frac{2r}{2} S_0'(k_1, k_2, \mu_m r) + 2rS_0(k_1, k_2, \mu_m r) \right] \]

\[\times \sin \left(\frac{n \pi r}{\xi} \right) e^{-\alpha r} \left[\tilde{F}' + \int_0^t \Psi e^{\alpha r} dt' \right]. \]

IV. SPECIAL CASE

Set \(f(r, t) = (1 - e^{-\alpha \varepsilon}) \delta(\varepsilon - r_0) \) \[(31) \]

Applying finite transform defined in Marchi Zgrablich [2] to the equation (31) one obtains

\[\tilde{f}(n, t) = (1 - e^{-\alpha \varepsilon}) r_0 S_0(k_1, k_2, \mu_m r_0) \]

Substituting the value of (32) in the equation (21) to obtain

\[T(r, z, t) = \frac{2}{\xi} \sum_{n=1}^{\infty} \frac{1}{C_n} \sum_{m=1}^{\infty} \lambda_m \sin(\lambda_m z) \cos(\lambda_m x) \]

\[\times S_0(k_1, k_2, \mu_m r) \]

\[\times \int_0^t (1 - e^{-\alpha \varepsilon}) r_0 S_0(k_1, k_2, \mu_m r_0) e^{-\alpha \varepsilon(t-t')} dt' \]

\[(33) \]

V. CONCLUSION

In this paper, we modify the conceptual idea proposed by Khobragade et al [2] for hollow cylinder and the temperature distributions, displacement and stress functions at the edge \(z = h \) occupying the region of the cylinder \(a < r < b \), \(0 \leq z \leq h \) have been obtained with the known boundary conditions. We develop the analysis for the temperature field by introducing the transformation defined by Zgrablich et al, finite Fourier sine transform and Laplace transform techniques with boundaries conditions of radiations type. The series solutions converge provided we take sufficient number of terms in the series. Since the thickness of cylinder is very small, the series solution given here will be definitely convergent. Assigning suitable values to the parameters and functions in the series expressions can derive any particular case. The temperature, displacement and thermal stresses that are obtained can be applied to the design of useful structures or machines in engineering applications.

ACKNOWLEDGEMENT

The authors are thankful to University Grant Commission, New Delhi for providing the partial financial assistance under major research project scheme.

REFERENCES

problems”, Advances in Math. Sci. and Appl., vol. 19, No.1, 403-413.

AUTHOR BIOGRAPHY

Dr. N.W. Khobragade for being M.Sc in statistics and Maths, he attained Ph.D in both subjects. He has been teaching since 1986 for 28 years at PGTD of Maths, RTM Nagpur University, Nagpur and successfully handled different capacities. At present he is working as Professor. Achieved excellent experiences in Research for 15 years in the area of Boundary value problems (Thermoelasticity in particular) and Operations Research. Published more than 180 research papers in reputed journals. Fourteen students awarded Ph.D Degree and six students submitted their thesis in University for award of Ph.D Degree under their guidance.

Mr. R. T. Walde. M.Sc (Maths), research student Dept. of Maths, RTM Nagpur University, Nagpur.

Dr. A.A. Navlekar For being M.Sc, Ph.D in maths, he has been teaching since 2004 for 10 years at PM Paithan , BAM University, Aurangabad.

Mr. Ritesh Ganar M.Sc in maths, he is a research scholar of Maths, RTM Nagpur University, Nagpur and sucessfully handled different capacities.