

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 119

Sharded Parallel Mapreduce in Mongodb for Online

Aggregation
B Rama Mohan Rao, A Govardhan,

Dept. of CSE, JNTU College of Engineering, Professor, School of Information Technology,

JNT University, Hyderabad JNT University, Hyderabad

Abstract—The Online Aggregation framework proposed

to obtain the approximate results for the complex queries

more quickly when compared to exact results using the

aggregation. The Map Reduce context has evolved as one of

the most commonly used parallel computing platforms for

processing of large databases. It is one of the widespread

programming model for handling of large datasets in

parallel with a cluster of machines. This Paradigm permits

for easy parallelization on several machines of data

computations. The Online Aggregation combined with Map

Reduce jobs to improve the performance of Query

processing in large databases and to obtain the approximate

Results. Sharding is the method of storing data records

across multiple machines and is one of the MongoDB’s

methodology to encounter the demands of increased data set

gradually. To minimize the time taken to execute very large

database using map and reduce functions shards used for

the implementation. This paper proposes a new methodology

to improve performance of the online aggregation known as

Sharded parallel MapReduce in MongoDB for Online

Aggregation to obtain the approximate results in less time

compared to the traditional MapReduce paradigm.

I. INTRODUCTION

The capability of generating and gathering a huge

amount of data sets for various applications are

increasing extremely over the last several years. The

users are gradually analyzing these massive datasets

using various large parallel database management

systems and other parallel data processing

infrastructures. Even though several management

systems are dramatically increasing the processing

speed of the queries significantly in order to obtain the

fast response, the queries are still taking millions of

hours to process the large input data. Since the

individual queries are taking more time to complete the

execution, the user is more interested to obtain only the

accurate feedback regarding the query execution status

[1]. Thus, the accurate feedback for the complex data

query processing systems produced exclusively with the

combination of MapReduce and Online Aggregation.

Online Aggregation proposed by Hellerstein [2] is a

methodology that facilitates the users to provide the

approximate results to the complex queries more

quickly when compared to the exact results. This

framework is proposed to obtain the approximate

results for the queries using the aggregation where the

database is scanned in random order and the results of

the aggregate query is updated eventually as the scan

proceeds. It is a technique for improving the interactive

behavior of database systems processing with expensive

analytical queries. This system performs the

aggregation query in the online fashion. The basic

method of online aggregation is to sample tuples from

the input relations and calculate a repeatedly filtering

running estimate of the result, along with a ―confidence

interval‖ to specify the accuracy of the estimated result.

These confidence intervals classically displayed as error

bars in a graphical user interface. The precision of the

estimated result increases as more and more input tuples

handled. In this system, users can both observe the

progress of their aggregation queries and control

execution of these queries on the fly. It allows

interactive exploration of large, complex datasets stored

in relational database management systems. Online

aggregation interface is a more flexible and satisfying

mechanism for data exploration than traditional batch-

mode query processing. The Map Reduce is a

programming model and a framework for data-intensive

distributed computing of batch jobs. MapReduce has

emerged as a popular way to harness the power of large

clusters of computers. MapReduce allows programmers

to think in a data-centric fashion. They focus on

applying transformations to sets of data records, allow

the details of distributed execution, network

communication, coordination, and fault tolerance to

handle by the MapReduce framework. To simplify fault

tolerance, the output of each Map Reduce task and job

materialized to disk before consumed. This framework

has evolved as one of the most broadly used parallel

computing model for processing on terabytes and

petabytes of data set in these recent years. The

MapReduce programming model originally designed

not only for the batch-oriented systems but also for

interactive data analysis. This tendency has enhanced

the development of high level query languages that are

implemented as MapReduce jobs, such as Hive [3],Pig

[4], Microsoft Dryad [5] and Sawzall [6].The

Traditional MapReduce express computation as a series

of jobs where inputs are the list of records (key-value

pairs). The map function is utilized to produce

intermediate key-value pairs and reduces function is

utilized to call for each distinct key in the map output.

The MapReduce paradigms perform both the map and

reduce functions parallel to ensure the fault tolerance.

The cloud computing community as a support to those

cloud-based applications that are data-intensive has also

adopted the MapReduce paradigm. The MapReduce

Programming model used in a wide variety of

http://en.wikipedia.org/wiki/Database_systems

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 120

applications and belonging to numerous domains such

as analytics, data processing, image processing,

machine learning, bio-informatics, astrophysics, etc.

One of the significant key element of the MapReduce

paradigm is that it is different from previous models of

parallel computation as it includes the sequential and

parallel computation together. MapReduce is very well

suitable for raw parallelization. The MapReduce

programming model permits data to pipeline between

operators, permits the data to run parallel between the

operators, provisions continuous queries, preserves the

fault tolerance properties of Hadoop and can run

unmodified user-defined MapReduce programs [16].

The Organization of this proposed paper done in this

way. Section 1 already discussed about the Introduction

for the paper. Section 2 gives the brief discussion on the

improvements in the parallel Map Reduce, Section 3

gives the brief discussion about parallelism in

MapReduce, Section 4 gives the brief discussion on the

proposed methodology, and its implementation, Section

5 discusses about the observed results and its analysis.

Section 6 concludes the paper followed by References

and Acknowledgement of the paper given in Section 7

and Section 8.

II. RELATED WORK

The MapReduce framework originally developed at

Google [7], but has recently seen wide adoption and has

become the de facto standard for large-scale data

analysis. Publicly available statistics indicate that

MapReduce used to process more than 10 petabytes of

information per day at Google alone [8]. MapReduce

[7] (with its open-source variant Hadoop [9]) is a

programming model that used for the processing and

implementation of large massive-scale datasets. The

Amazon released Elastic MapReduce [10], a web

service that facilitates users too easily and economically

process large amounts of data. The service comprises of

accommodated Hadoop framework running on

Amazon’s Elastic Compute Cloud (EC2) [11]. The

Amazon’s Simple Storage Service (S3) [12] functions

as storage layer for Hadoop. The Azure MapReduce

[13] is an implementation of the MapReduce

programming model, built on the infrastructure

services, the Azure cloud [14] offers. Nowadays, online

aggregation renewed in the context of cloud computing,

and some studies conducted based on MapReduce. [17]

Propose an alternative implementation of an online

MapReduce framework under the shared-memory

architecture. The focus of this study is not on large-

scale framework architecture but on the challenges of

parallel data analytics. Pansare et al implements OLA

over MapReduce based on Bayesian framework [15].

The first parallax non-trivial time-based evolutionary

indicator for Pig Latin scripts presented in [18] that

interprets into a sequence of MapReduce jobs. During

the query execution, changing processing speeds and

degrees of parallelism handled by Parallax. The

implementation of parallax in Pig and overtakes present

replacements on typical workloads. Parallax breaks

queries into pipelines in single-site SQL query progress

estimation [19], [20], that is collections of

interconnected operators performed instantaneously.

For large problems, parallelism appears to be another

promising approach to scaling up, particularly since

multi-core, cluster and cloud computing are becoming

increasingly the norm. Among parallel computing

frameworks, MapReduce has recently been attracting

much attention in both industry and academia. There

are numerous successes of MapReduce [21], [22]

including applications for machine learning and data

mining problems. Parallel databases in the 80’s and

90’s [24], [25] are hard to measure since it requires

special hardware and lacked satisfactory solutions to

fault tolerance. The large-scale parallel databases [26],

[27] are rapidly emerging now a day started to engage

the MapReduce for the benefits of parallelism and fault

tolerance. Most of the research aligned with these

efforts but focuses on one-pass analytics. Hyracks is a

new parallel software platform that proposes a DAG-

based programming model, Even though Hayracks are

not so good for the effective incremental computation

than Hadoop, it is more general than MapReduce

programming mode. [28] Refers to the techniques

where the new MapReduce model used for enormous

segregation parallelism and outspread it to incremental

one-pass processing, which later used to support stream

processing.

III. PARALLELISM IN MAPREDUCE

In the recent research work, the MapReduce is one of

the widespread programming model for handling of

large datasets in parallel with a cluster of machines. The

Map-Reduce programming model has recently become

a primary choice for fault-tolerant and massively

parallel data crunching [39].This programming model

uses the sort-merge technique with the aim to support

the parallel processing systems. Hadoop is a familiar

open-source software implementation that uses the

parallelism in MapReduce paradigm. The Hadoop uses

block-level scheduling and a sort-merge technique [29]

to implement the group-by functionality for parallel

processing of data. The Hadoop causes excessive CPU

and I/O overheads with the use of block-level

scheduling and a sort-merge technique that blocks

reduce operation particularly when multi-pass merge is

applied. The MapReduce parallelization unlikely from

previous serial implementation, it permits to improve

the data size reach by about two to three orders of

magnitude (from 20K to 8M vertices). The MapReduce

model is best suited for parallelizing because of its

capacity to handle large disk-resident data. To

accomplish the concept of parallelization into the

MapReduce programming model, it essentially

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 121

implements the map function to group the data with the

help of key and then perform reduce function on each

group. The MapReduce Paradigm agrees for parallelism

in both the extraction of (key, value) pairs known as the

map function and the use of reduce function to each

group that is executed in parallel on many nodes. This

working model also referred as the MapReduce group-

by paradigm. The system of MapReduce performs this

computation model including additional functionality

such as load balancing and fault tolerance. The

parallelism concept applied to various stages in

MapReduce programming paradigm as follows:

1. Parallelized mapping over input data set: Both the

key and value pairs of input data sets processed one by

one. This form of a list map is affable to total data

parallelism [30], [31]. The order of processing the key

and value pairs does not affect the result of the map

phase since map is a pure function. The communication

between the different threads also avoided.

2. Parallelized grouping among intermediate data

set: The collection of intermediate data sets using a key

is essentially a sorting problem for the reduce phase and

numerous parallel sorting models exist [6], [34]. If a

distributed map phase is expected, then it is sensible to

expect grouping to be associated with distributed

mapping. That is, grouping performed for any part of

intermediate data. This distributed grouping result could

combine centrally, just as in the case of a parallel-

merge-all strategy [35].

3. Parallelized mapping over grouping data set: A

group is nothing but a key with a list of values. The

reduction operation performed individually for each

group. Again, the arrangement of a mapping operation

applied here. The entire data parallelism is

acknowledged for the reduce phase just as for the map

phase.

4. Parallelized reduction for each grouping data set:

The Reduce is an operation that separates a list into a

distinct value through an associative operation and its

components. Then, each application of the Reduce

operation immensely parallelized by calculating sub-

reductions in a tree-like arrangement while applying the

associative operation at the nodes [32], [33]. Apart from

these if the binary operation is also commutative, then

the order of combining results from sub-reductions can

be random.

In the MapReduce programming model, parallelism

achieved through a "split/sort/ merge /join" process and

described as A MapReduce Job starts from a predefined

set of Input data shown in Fig 1. A principal daemon,

which is a central coordinator, that starts and the job

configuration done.

 According to the job config, the principal daemon

will initiate multiple Mapper daemons and Reducer

daemons in different equipment. Then the input reader

starts reading the data from the DFS directory. This

input reader will chunk the read data consequently and

send them to the arbitrarily preferred Mapper. This is

the split phase where the parallelism originates.

 After the data chunked, the mapper daemon will

run a user-supplied map function and produce a

collection of key, value pairs. Each element within this

collection will sort according to the key and send to the

corresponding Reducer daemon. This is the called the

sort phase.

 All elements with the similar key will move to the

same Reducer daemon. It obtains all the items of that

key and raises a user-supplied Reduce function and

finally, produce a single entry key, aggregated value as

a result. This is called the merge phase.

 The output writer collects the output of reducer

daemon. This is effectively called the join phase where

the parallelism of mapper and reduce function ends.

Apart from these the drawback of MapReduce to

achieve parallelizability in the paradigms are limited to

use only map and reduce functions in their programs.

Thus, this model trades of programmer flexibility for

easy parallelization. This is a difficult trade off, and it is

not a priori clear where problems can efficiently solve

in the MapReduce paradigm.

A. MongoDB

MongoDB is an open source and a schema-free

document-oriented database written in C++ and

developed in an open-source project which is mainly

driven by the company 10gen Inc. According to the

developers of MongoDB, the foremost objective is to

decrease the variances between the fast and highly

accessible key-value-stores and feature-rich traditional

RDBMSs relational database management systems.

MongoDB name derived from the adjective humongous

[36]. Prominent users of Mongo DB include

SourceForge.net, foursquare, the New York Times, the

URL-shortener bitsy, and the distributed social network

DIASPORA [38]. Mongo DB is an open source NoSQL

document store database, commercially supported by

10gen [37]. Even though Mongo DB is a non-relational

database, it implements many features of relational

databases, such as sorting, secondary indexing and

range queries. MongoDB does not organize data in the

form of tables with columns and rows; instead, it stores

the data in the document form, each of which is an

associative array of scalar values, lists, or nested

associative arrays. MongoDB documents serialized

naturally as Java script Object Notation (JSON) objects,

and are in fact, stored internally using a binary encoding

of JSON called BSON. If suddenly one of the shard

shuts down, the other shards will distribute chunks

among them equally in order to maintain a constant and

continuous service; this is the best part of using

MongoDB. To measure the performance of Mongo DB

on a cluster of servers, it uses a technique called

sharding, which is nothing but the process of splitting

the data uniformly across the cluster to parallelize the

access of data.

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 122

Fig 1: Block diagram of the Map Reduce model using shards

Start

Key/Value Key/Value

Map

()
Map() Map()

Input Writer

Chunk

1

Chunk

2
Chunk

3

Chunk

4

Chunk 5 Chunk

n

Shift Phase

Output Writer

Stop

Key/ Aggregated Value

Key/Value Key/Value Key/Value

Join Phase

Merge Phase

Reducer Daemon

Reduce() Reduce() Reduce()

Sort Phase

Shard 2 Shard n

Mapper Daemon

Shard 1

Master Daemon

Key/Value

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 123

These shards implemented by breaking the Mongo

DB server into a set of front-end routing servers

(mongos), which route operations to a set of back-end

data servers (mongod). Sharding is the method of

storing data records across multiple machines and is one

of the MongoDB’s methodology to encounter the

demands of increased data set gradually. The Concept

of sharding in Mongo DB supports the growth in the

database and the increasing demands of read and write

operations by adding more number of machines into it

at a time. Database systems with large data sets and

high throughput applications can challenge the capacity

of a single server. High query rates can exhaust the

CPU capacity of the server. Larger data sets exceed the

storage capacity of a single machine. Finally, working

set sizes larger than the system’s RAM stress the I/O

capacity of disk drives. To address these issues of

scales, database systems have two basic approaches:

vertical scaling and sharding.

Vertical scaling adds more CPU and storage

resources to increase the capacity of the system. The

addition of the capacity in the resources has some

limitations: high performance systems with large

numbers of CPUs and large amount of RAM are

disproportionately more expensive compared to smaller

systems. There is a practical maximum capability for

vertical scaling.

Sharding, or horizontal scaling, divides the data set

and distributes the data over multiple servers, or shards.

Each shard is an independent database and collectively

the shards make up a single logical database.

Fig 2: Database split into groups of chunks

Sharding addresses some of the challenge of scaling

to support high throughout and large data sets. They

are:

 Sharding minimizes the number of operations

each shard handles. Each shard processes less number

of operations as the cluster grows. As a result, shared

clusters can increase capacity and throughput

horizontally. For example, to insert data, the application

only needs to access the shards that are liable for

required records.

 Sharding reduces the amount of data that each

server needs to store. Each shard stores less data as the

cluster grows. For example, if a database has a 1-

terabyte data set, and there are four shards, then each

shard might hold only 256GB of data. If there are 40

shards, then each shard might hold only 25GB of data.

B. Sharding in MongoDB

MongoDB supports sharding through the

configuration of sharded clusters. Sharded cluster has

the following components: shards, query routers, and

config servers:

 Shards store the data. To provide high

availability and data consistency, in a production

sharded cluster, each shard act as a data set.

 Query Routers, or mongos instances, interface

with client applications and direct operations to the

appropriate shard or shards. The query router processes

and targets operations to shards and then returns results

to the clients. A sharded cluster can contain more than

one query router to divide the client request load. A

client sends requests to one query router. Most of the

sharded cluster has many query routers.

Config servers store the cluster’s metadata. This data

contains a mapping of the cluster’s data set to the

shards. The query router uses this metadata to target

operations to specific shards. Production sharded

clusters have exactly three config servers.

C. Data Partitioning

MongoDB distributes data or shards at the collection

level. Sharding partitions a collection’s data by the

shard key.

Shard Keys: To shard a collection, you need to select

a shard key. A shard key is either an indexed field or an

indexed compound field that exists in every document

in the collection. MongoDB divides the shard key

values into chunks and distributes the chunks evenly

across the shards. To divide the shard key values into

chunks, MongoDB uses either range based partitioning

or hash based partitioning.

Range Based Sharding: For range-based sharding,

MongoDB divides the data set into ranges determined

by the shard key values to provide range based

partitioning.

Consider a numeric shard key: If you visualize a

number line that goes from negative infinity to positive

infinity, each value of the shard key falls at some point

on that line. MongoDB partitions this line into smaller,

non-overlapping ranges called chunks where a chunk is

range of values from some minimum value to some

maximum value. Given a range based partitioning

system, documents with ―close‖ shard key values are

likely to be in the same chunk, and therefore on the

same shard.

Hash Based Sharding: For hash based partitioning,

MongoDB computes a hash of a field’s value, and then

uses these hashes to create chunks. With hash based

partitioning, two documents with ―close‖ shard key

values are unlikely to be part of the same chunk. This

ensures a more random distribution of a collection in

the cluster.

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 124

Fig 4: Sharded parallel MapReduce in MongoDB for Online Aggregation

Resultant set

1

Resultant set

2

Resultant set

3

Resultant set 4

Combined Resultant Set

Estimate count and confidence interval

Is Fully

Processed?

Approximate Resultant set

MapReduce 1 MapReduce 2 MapReduce 3 MapReduce 4

Map ()

Reduce ()

Map ()

Reduce ()

Map ()

Reduce ()

Map ()

Reduce ()

Shard 1 Shard 2 Shard 3 Shard 3

Start

Very Large Database in MongoDB

Chunk 2 Chunk 3 Chunk 4 Chunk 6 Chunk 7 Chunk 8 Chunk

1

Chunk 5 Chunk 9

End

Yes

No

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 125

IV. PROPOSED METHODOLOGY

In the Online Aggregation, the large database are

scanned in random order during the query processing

time and as the scan proceeds sequentially, the

approximate result updated for every aggregating query.

The MapReduce programming model used along with

the online aggregation to obtain the approximate results

of the lager database in less time compared to the time

taken to compute in the Traditional Query Processing

systems, but it is usual that for the very large data set

the computation time using the online aggregation

interface and MapReduce model is high. As the size of

the data increases, a single machine is not enough to

store the data and not sufficient to produce a

satisfactory read and write throughput. Thus, to

minimize the time taken to compute very large data sets

this paper proposed a new methodology known as

Sharded parallel MapReduce in MongoDB for Online

Aggregation. This methodology uses shards to store

large data sets across multiple machines in Mongo DB

for parallel execution where the map and reduce

functions are executed in parallel on two or more

servers, computer or terminals at same time. This

methodology also improves the performance and

efficiency of the online aggregation and MapReduce

paradigm.

Fig 3: Chunks assigned to each shard in a balanced way

(Chunks need not necessarily be in order

A. Algorithm for sharded parallel MapReduce in

mongo DB for Online Aggregation

Algorithm 1 and Fig 4 gives the method of

implementation of the proposed methodology. In this

methodology, very large datasets needed to run on

multiple machines considered for implementation. This

large database grouped into some equal or unequal

number of chunks as shown in Fig 3. Then these group

of chunks are combined randomly to form group of

datasets known as shards as shown in Fig 2. Grouping

of the chunks into shards done in any order depending

on the size of the database where each chunk

considered for easy execution. The obtained shards

send to each MapReduce Programming model for

execution. The map and reduce functions are performed

in sequence, which in turn executed on different

machines parallel. Thus, the time taken to execute all

the shards in MapReduce model is similar. The

retrieved reduced resultants sets then combined and

given to the interface for Online Aggregation to get an

efficient approximate result quickly.

Sharded parallel MapReduce in MongoDB for Online

Aggregation Algorithm 1:

1. Consider the collection of very large data set in terms

of terabytes or petabytes in the open software Mongo

DB for Query Processing.

2. The collection of whole database divided into group

of datasets known as chunks.

3. These chunks grouped into number of shards equally

or unequally.

4. The total numbers of shards obtained given to each

MapReduce Paradigm for parallel execution at a time.

a. First the map function is performed where the

number of values are mapped to the same keys

b. Then reduce function is performed for the

same keys in order to combine the values at

one place.

5. The steps (a) and (b) performed until map and reduce

operations in each MapReduce model completely

execute the data set

6. Then the resultant reduced data set is sent to the

online aggregator to estimates the count , confidence

and interval for the data set and the results are updated

from the previous to new ones.

7. The step 6 continues until all the reduced data set in

the online aggregation gives approximate results.

V. EXPERIMENTAL RESULTS

The Fig 5 shows the output results of the

implemented in Mongo DB open software using three

model set or clusters or shards. The three terminals

shown in the Fig 4 are used for implementing the

sharding in three clusters while one master terminal

takes over the above three terminals to control it as

slave terminals.

Fig 5: the Output Result for the execution of

MapReduce function on 3 terminals

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 126

Fig 6: the Output result of Online Aggregation in the

Applets

Fig 6 show the online aggregation execution where the

MapReduce implemented on 3 terminals for the whole

database and the online aggregation results obtained on

the applet front end. The Aggregate Function selected

for the execution is Average.

1. Average – Average of the values in the field

num_tabs in the database.

2. Confidence – The confidence interval for which the

online aggregation was default set into.

3. Interval – The Error value that might occur while

approximating the values of the MapReduce.

VI. CONCLUSION

The MapReduce Paradigm used in online aggregation

has proved to be very efficient methodology for the

retrieving approximate results in the large dataset. The

use of the parallelism concept into MapReduce helps to

further increase the efficiency. The execution of the

very large database in two more processors, servers or

machines improved the performance. Here for

effectively make use of parallelism in MapReduce, the

Mongo DB used shards into the database. Thus,

executing the MapReduce in various servers with the

help of shards has improved the MapReduce framework

in Mongo DB, thereby improving the online

aggregation performance. This actually works better

than the previously proposed methodologies of

traditional MapReduce since the fact that the program

executed in more than one processor is considered.

Using shard a pseudo cluster created, if the desktop

configuration is high, as in Huge Ram (16GB) and

faster processor, the number of shards increases,

thereby increasing the level of parallelism in

architecture.

REFERENCES
[1] A. Myers, ―The importance of percent-done progress

indicators for computer-human interfaces,‖ In Proc. of

CHI’85, pp. 11–17, 1985.

[2] J. M. Hellerstein, ―The case for online aggregation,‖

Technical Report, EECS Computer Science Division,

University of California, Berkeley, CA, 1996.

[3] Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.

Anthony, H. Liu, P. Wyckoff, and R. Murthy, ―Hive —a

warehousing solution over a map-reduce framework‖, In

VLDB, 2009.

[4] Olston, B. Reed, U. Srivastava, R. Kumar, and A.

Tomkins, ―Pig latin: a not-so-foreign language for data

processing‖, In Proc. of the SIGMOD Conf., pp.1099–

1110, 2008.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.

Dryad, ―Distributed Data-Parallel Programs from

Sequential Building Blocks,‖ Proc. European Conf.

Computer Systems, Mar. 2007.

[6] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan,

―Interpreting the data: Parallel analysis with Sawzall‖,

Scientific Programming, vol. 13, no. 4, pp. 277–298,

2005.

[7] J. Dean and S. Ghemawat, ―MapReduce: simplified data

processing on large clusters‖, In Proceedings of OSDI,

pp. 137–150, 2004.

[8] Das, M. Datar, A. Garg, and S. Rajaram, ―Google news

personalization: Scalable online collaborative filtering‖,

In Proceedings of WWW, pp. 271–280, 2007.

[9] Hadoop, http://hadoop.apache.org/Amazon Elastic

MapReduce, http://aws.amazon.com/elasticmapreduce/.

[10] Amazon Elastic Compute Cloud (EC2),

http://aws.amazon.com/ec2/.

[11] Amazon Simple Storage Service (S3),

http://aws.amazon.com/s3/.

[12] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox,

―MapReduce in the Clouds for Science,‖ In Procs. of

CLOUDCOM ’10, pp. 565–572, Washington, DC, 2010.

[13] The Windows Azure Platform,

http://www.microsoft.com/windowsazure/.

[14] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie,

―Online aggregation for large MapReduce jobs‖, In

VLDB 2011 Conference Proceedings, pp. 1135–1145,

August 2011.

[15] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J.

Gerth, J. Talbot, K. Elmeleegy, and R. Sears, ―Online

aggregation and continuous query support in

MapReduce‖, In SIGMOD 2010 Conference

Proceedings, pp. 1115–1118, June 2010.

[16] Bose JH, Andrzejak A and Hogqvist M, ―Beyond online

aggregation: Parallel and incremental data mining with

online Map-Reduce‖, Proceedings of the workshop on

massive data analytics on the cloud, Raleigh, 2010.

[17] Kristi Morton, Abram Friesen, Magdalena Balazinska

and Dan Grossman Computer Science and Engineering

Department, ―Estimating the Progress of MapReduce

Pipelines,‖ University of Washington Seattle,

Washington, USA.

[18] S. Chaudhuri, V. Narassaya, and R. Ramamurthy,

―Estimating progress of execution for SQL queries,‖ In

Proc. of the SIGMOD Conf., Jun 2004.

[19] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke,

―Toward a progress indicator for database queries‖, In

Proc. of the SIGMOD Conf., Jun 2004.

http://www.microsoft.com/windowsazure/

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 4, October 2013

 127

[20] R. M. Yoo, A. Romano, and C. Kozyrakis, ―Phoenix

Rebirth: Scalable MapReduce on a Large-Scale Shared-

Memory System,‖ in Proceedings of 2009 IEEE

International Symposium on Workload Characterization

(IISWC), pp. 198–207, 2009.

[21] J. Dittrich, J.-A. Quian´e-Ruiz, S. Richter, S. Schuh, A.

Jindal, and J. Schad, ―Only Aggressive Elephants are

Fast Elephants‖, PVLDB, 5, 2012.

[22] J. DeWitt, R. H. Gerber, G. Greak ,M .L. Heytrns, K. B.

Kumar and M. Muralikrishna, ―Gamma - a high

performance dataflow database machine‖, In Proc. 12th.

Conf. on Very Large Database, pp. 228–237, August

1986.

[23] DeWitt and J. Gray, ―Parallel database systems: the

future of high performance database systems‖, Commun.

ACM, vol. 35, no. 6, pp. 85–98, 1992.

[24] Abouzeid, K. Bajda-Pawlikowski, K.Adabi, D.

Silberschatz, A.Rasin, S.A., ―Hadoopdb: An architectural

hybrid of MapReduce and dbms technologies for

analytical workloads‖, Proc. VLDB Endow, Vol. 2, No.

1, pp. 922–933, 2009.

[25] Friedman, P. Pawlowski, and J. Cieslewicz,

―SQL/MapReduce: a practical approach to self-

describing, polymorphic, and parallelizable user-defined

functions‖, Proc. VLDB Endow., vol. 2, no. 2, pp. 1402–

1413, 2009.

[26] Edward Mazur, Boduo Li, Yanlei Diao, Prashant

Shenoy, ―Towards Scalable One-Pass Analytics Using

MapReduce,‖

[27] T. White, ―Hadoop: The Definitive Guide‖, O’Reilly

Media, Inc., 2009.

[28] B. Skillicorn, ―Architecture-independent parallel

computation,‖ IEEE Computer, vol. 23, No. 12, pp. 38–

50, 1990.

[29] B. Skillicorn, ―Foundations of Parallel Programming,‖

Number 6 in Cambridge Series in Parallel Computation,

Cambridge University Press, 1994.

[30] E. Blelloch, ―Programming parallel algorithms,‖

Communications of the ACM, vol. 39, no. 3, pp. 85–97,

1996.

[31] D. B. Skillicorn and D. Talia, ―Models and languages for

parallel computation,‖ ACM Computing Surveys, vol.

30, no. 2, pp. 123–169, 1998.

[32] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A.

Bricker, H.-I. Hsiao, and R. Rasmussen, ―The Gamma

Database Machine Project,‖ IEEE Transactions on

Knowledge and Data Engineering, vol. 2, no. 1, pp. 44–

62, 1990.

[33] 10gen, Inc: MongoDB, 2010, http://www.mongodb.org.

[34] Copeland and Rick, ―How Python, Turbo Gears, and

MongoDB are Transforming Source,‖ Forge.net,

Presentation at PyCon in Atlanta, February 2010.

[35] Heymann and Harry, ―MongoDB at foursquare‖,

Presentation at MongoNYC in New York, May 2010.

[36] Strozzi and Carlo, ―NoSQL – A relational database

management system‖, 2007–2010.

[37] Chen, S., and Schlosser, S. W. Map-reduce meets wider

varieties of applications. Tech. Rep. IRP-TR-08-05, Intel

Labs Pittsburgh Tech Report, May 2008.

