Load Flow Analysis and Reliability Evaluation of 220kV Kerala Power System

Dr. J. Abdul Jaleel, Shabna.S.S
drjaleel56@gmail.com, shabnashooja@gmail.com

Abstract—This paper presents the load flow analysis and the reliability evaluation of 220 kV power system of Kerala. Load-flow studies are important for planning future expansion of power systems as well as in determining the best operation of existing systems and here one of the efficient methods of Newton Raphson is used. The principal information obtained from the load flow analysis is the magnitude and phase angle of the voltage at each bus, and the real and reactive power flowing in each line. Single line diagram is modeled using Electrical Transient Analyzer Program (ETAP) software. The various reliability indices are also obtained which can be used as a measure of system reliability. The optimal capacitor placement is also done using ETAP. Load flow is also carried out using MATLAB software.

Index Terms—ETAP, Load Flow Analysis, MATLAB, Newton-Raphson, Reliability.

I. INTRODUCTION

Electrical power system provides a vital service to the society. It should be operated with the goal of achieving highest reliability standards, minimum operational costs and environmental impacts. Power systems are complex, nonlinear, stochastic, dynamic systems. With the increasing network connections power systems have been growing in size and complexity.

Power flow studies commonly referred to as load flow are the backbone of power system analysis and design. They are necessary for planning, operation, economic scheduling and exchange of power between utilities. Power flow analysis finds many applications in other analyses such as transient stability and contingency studies.

The quality and reliability of a power system determined when it is operating satisfactorily is characterized by a nearly constant frequency, voltage profile at a low level of outage. Power system reliability is defined as ability of electrical power system to supply the system load with reasonable continuity and quality of supply.

The reliability of a power system is dependent on the number of outages or power failures that will occur in the service period and outage duration. Reliability of a power system is the probability of it performing its purpose adequately for the duration in which it has to operate under the conditions encountered. Major subdivisions of power system reliability are system adequacy and system security. The term adequacy relates to the existence of sufficient facilities within the system to satisfy the consumers’ load demand and system operational constraints. Thus, adequacy majorly deals with static conditions and not the dynamic and transients of power system. Security is associated with system dynamics and disturbances in the system. Security is therefore related to the response of the system to perturbations it is subjected to.

In this paper the load flow analysis and reliability evaluation of the 220KV Kerala Power System is done. For the load flow Newton Raphson iterative method is utilized. Reliability indices were calculated using the ETAP Software. The sections are organized as follows. Section II describes the load flow analysis and the method used and section III briefs the reliability evaluation and the reliability indices used here. Section IV discusses about the results obtained.

II. LOAD FLOW ANALYSIS

In a three phase ac power system active and reactive power flows from the generating station to the load through different networks buses and branches. The flow of active and reactive power is called power flow or load flow. Power flow studies provide a systematic mathematical approach for determination of various bus voltages, phase angle active and reactive power flows through different branches, generators and loads under steady state condition [1]. Power flow analysis is used to determine the steady state operating condition of a power system. Power flow analysis is widely used by power distribution professional during the planning and operation of power distribution system. Mainly three methods are there for load flow- Gauss Seidel, Newton Raphson and Fast Decoupled. Here Newton Raphson method is used for load flow analysis.

A. Newton Raphson Method

The most widely used power flow solution employs Newton-Raphson technique. Because of its quadratic convergence, Newton's method is mathematically superior to the Gauss-Seidel method and is less prone to divergence with ill-conditioned problems. For large power systems, the Newton-Raphson method is found to be more efficient and practical. The number of iterations required to obtain a solution is independent of the system size, but more functional evaluations are required for each iteration. Since in the power flow problem real power and voltage magnitude are specified for the voltage-controlled buses, the power now equation is formulated in polar form [4].

558
The real and reactive power at bus \(i \) is
\[
P_i + jQ_i = V_i I_i^*
\]
(1)
\[
I_i = \frac{P_i - jQ_i}{V_i}
\]
(2)

The above equation can be written in terms of bus admittance matrix as
\[
I_i = \sum_{j=1}^{n} Y_{ij} V_j \angle \theta_{ij} + \delta_j
\]
(3)
\[
P_i - jQ_i = |V_i|^2 \angle -\delta \sum_{j=1}^{n} Y_{ij} |V_j| \angle \theta_{ij} + \delta_j
\]
(4)

Separating the real and imaginary parts,
\[
P_i = \sum_{j=1}^{n} |V_i| |V_j| \cos(\theta_{ij} - \delta_i + \delta_j)
\]
(5)
\[
Q_i = -\sum_{j=1}^{n} |V_i| |V_j| \sin(\theta_{ij} - \delta_i + \delta_j)
\]

Expanding the above equations and in Taylor’s series about the initial estimate and neglecting all higher order terms results in the following set of linear equations
\[
\begin{bmatrix}
\Delta P^{(1)}_i \\
\vdots \\
\Delta P^{(m)}_i \\
\Delta Q^{(1)}_i \\
\vdots \\
\Delta Q^{(m)}_i \\
\Delta \delta^{(1)}_i \\
\vdots \\
\Delta \delta^{(m)}_i
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial P^{(1)}_i}{\partial \delta_i} & \frac{\partial P^{(2)}_i}{\partial \delta_i} & \ldots & \frac{\partial P^{(m)}_i}{\partial \delta_i} \\
\frac{\partial Q^{(1)}_i}{\partial \delta_i} & \frac{\partial Q^{(2)}_i}{\partial \delta_i} & \ldots & \frac{\partial Q^{(m)}_i}{\partial \delta_i} \\
\frac{\partial P^{(1)}_i}{\partial V_i} & \frac{\partial P^{(2)}_i}{\partial V_i} & \ldots & \frac{\partial P^{(m)}_i}{\partial V_i} \\
\frac{\partial Q^{(1)}_i}{\partial V_i} & \frac{\partial Q^{(2)}_i}{\partial V_i} & \ldots & \frac{\partial Q^{(m)}_i}{\partial V_i} \\
\frac{\partial \delta^{(1)}_i}{\partial \delta_i} & \frac{\partial \delta^{(2)}_i}{\partial \delta_i} & \ldots & \frac{\partial \delta^{(m)}_i}{\partial \delta_i} \\
\frac{\partial \delta^{(1)}_i}{\partial V_i} & \frac{\partial \delta^{(2)}_i}{\partial V_i} & \ldots & \frac{\partial \delta^{(m)}_i}{\partial V_i}
\end{bmatrix}
\begin{bmatrix}
\Delta \delta^{(1)}_i \\
\vdots \\
\Delta \delta^{(m)}_i \\
\Delta V^{(1)}_i \\
\vdots \\
\Delta V^{(m)}_i
\end{bmatrix}
\]
(6)

In the above equation bus 1 is assumed to be the slack bus. The Jacobian matrix gives the linearized relationship between small changes in voltage angle \(\Delta \delta_i^{(k)} \) and voltage magnitude \(\Delta V_i^{(k)} \). With the small changes in real and reactive power \(\Delta P_i^{(k)} \) and \(\Delta Q_i^{(k)} \).

In short form it can be written as,
\[
\begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix}
= \begin{bmatrix}
J_1 & J_2 \\
J_3 & J_4
\end{bmatrix}
\begin{bmatrix}
\Delta \delta \\
\Delta V
\end{bmatrix}
\]
(7)

For voltage controlled buses, the voltage magnitudes are known. Therefore, if \(m \) buses of the system are voltage-controlled, \(m \) equations involving \(\Delta V \) and \(\Delta Q \) - the corresponding columns of the Jacobian matrix are eliminated.

So there are \(n-1 \) real power constraints and \(n-1-m \) reactive power constraints. Jacobian matrix is of order \((2n-2-m) \times (2n-2-m)\). \(J_1 \) is of the order \((n-1) \times (n-1)\). \(J_2 \) is of the order \((n-1) \times (n-1-m)\). \(J_3 \) is of the order \((n-1-m) \times (n-1)\) and \(J_4 \) is of the order \((n-1-m) \times (n-1-m)\).

The diagonal and the off- diagonal elements of \(J_1 \) are
\[
\frac{\partial P_i}{\partial \delta_j} = \sum_{j \neq i} |V_i||V_j| \sin(\theta_{ij} - \delta_i + \delta_j)
\]
(7)

The diagonal and the off- diagonal elements of \(J_2 \) are
\[
\frac{\partial P_i}{\partial V_j} = |V_i|^2 \cos(\theta_{ij} - \delta_i + \delta_j)
\]
(7)

The diagonal and the off diagonal elements of \(J_3 \) are
\[
\frac{\partial Q_i}{\partial \delta_j} = -|V_i||V_j| \cos(\theta_{ij} - \delta_i + \delta_j)
\]
(7)

The diagonal and the off diagonal elements of \(J_4 \) are
\[
\frac{\partial Q_i}{\partial V_j} = -2|V_i||V_j| \sin \theta_{ij} - \sum_{j \neq i} |V_i||V_j| \sin(\theta_{ij} - \delta_i + \delta_j)
\]
\[\frac{\partial Q}{\partial V_j} = -V_j [V_j \sin(\theta_j - \delta_j)] \quad j \neq i \]

(8)

The terms \(\Delta P_i^{(k)} \) and \(\Delta Q_i^{(k)} \) are the difference between the scheduled and calculated values, known as the power residuals, given by,

\[\Delta P_i^{(k)} = P_i^{sch} - P_i^k \]
\[\Delta Q_i^{(k)} = Q_i^{sch} - Q_i^k \]

(9)

The new estimates for bus voltages are

\[\delta_j^{(k+1)} = \delta_j^{(k)} + \Delta \delta_j^{(k)} \]

(10)

The new voltage magnitudes and phase angles are computed from the equations. The process is continued until the residuals \(\Delta P_i^{(k)} \) and \(\Delta Q_i^{(k)} \) are less than the specified accuracy, i.e.,

\[|\Delta P_i^{(k)}| \leq \varepsilon \]
\[|\Delta Q_i^{(k)}| \leq \varepsilon \]

III. RELIABILITY EVALUATION

Reliability evaluation techniques have been well developed [5]. A system component such as a generator, a transmission line, or a reactive power compensator can be represented using the two-state reliability model as shown in Figure 1. The concepts of availability and unavailability are associated with the simple two-state model and this model is directly applicable to a base load generating unit which is either operating or forced out of service. When failure rate \(\lambda \) and repair rate \(\mu \) are time invariant the system can be considered as a Markov process.

![Fig. 1. Two state model of a component](image)

The availability \(A \) and unavailability \(U \) of a component can be calculated based on its failure rate \(\lambda \) and repair rate \(\mu \) using the following equations:

\[A = \frac{\mu}{\lambda + \mu} \quad U = \frac{\lambda}{\lambda + \mu} \]

(11)

A. Reliability Indices

Results from a reliability study can be expressed using different reliability indices. There are many possible reliability indices, which often are interdependent. In order to reflect the severity or significance of a system outage, reliability indices are evaluated. Depending on the application, a suitable set of indices has to be chosen, to perform the reliability evaluation. It is fairly common practice in the electric utility industry to use the standard IEEE reliability indices like CAIDI, SAIFI, SAIDI to track and benchmark reliability performance. These reliability indices include measures of outage duration, frequency of outages, system availability and response time. The standard deviation of the reliability indices provides distribution engineers with information on the expected range of the annual values. The evaluation of reliability indices for a composite system is very much computationally demanding, gives the overall behavior of the system.

1. System Average Interruption Frequency Index, SAIFI (f/customer.yr)

\[SAIFI = \frac{\text{Total no of Customer Interruptions}}{\text{Total no of customers served}} \]

(12)

SAIFI is a measure of how often an average customer loses supply during one year. It is the average number of times that a system customer is interrupted during a time period.

2. System Average Interruption Duration Index, SAIDI (hr/customer.yr)

\[SAIDI = \frac{\text{Total no of Customer Interruption duration}}{\text{Total no of customers served}} \]

(13)

It is the average outage duration for each customer served.

3. Customer Average Interruption Duration Index, CAIDI (hr/customer interruption)

\[CAIDI = \frac{\text{Total no of Customer Interruption duration}}{\text{Total no of Customer Interruption}} \]

(14)

CAIDI gives the average outage duration that any given customer would experience.

4. Average System Availability Index, ASAI (pu)

\[ASAI = \frac{\text{Customer hours of Available service}}{\text{Customer hours demanded}} \]

(15)

5. Average Service Unavailability Index, ASUI

\[ASUI = 1 - ASAI \]

(16)
IV. RESULTS

Load flow analysis is carried out in the 220KV system of Kerala. MATLAB program for finding the voltage magnitude and angles, power flows and the total losses in the system is utilized. Single line diagram of the 220kv substation in Kerala was simulated using ETAP software and was modeled according to Fig. 2. The ETAP Load Flow Analysis module calculates the bus voltages, branch power factors, currents, and power flows throughout the electrical system. The various reliability indices like SAIFI, SAIDI, CAIDI, ASAI and ASUI are found out using ETAP software and are shown in Table I.

The MATLAB program for the load flow analysis uses Newton Raphson method for the load flow analysis. The various buses are classified as slack bus, generator bus and the load bus. The line data and bus data for the 220kV Kerala power system were calculated and given as the input. The power injections in various buses were obtained for normal case, outages cases and for other contingencies.

The percentage voltage magnitude with and without capacitor placement is obtained from ETAP software and are shown in Table II.

TABLE I
RELIABILITY INDICES

<table>
<thead>
<tr>
<th>Reliability Indices</th>
<th>System Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIFI</td>
<td>0.2137 f / customer .yr</td>
</tr>
<tr>
<td>SAIDI</td>
<td>9.3003 hr / customer .yr</td>
</tr>
<tr>
<td>CAIDI</td>
<td>43.527 hr / customer interruption</td>
</tr>
<tr>
<td>ASAI</td>
<td>0.9989 pu</td>
</tr>
<tr>
<td>ASUI</td>
<td>0.00106pu</td>
</tr>
<tr>
<td>EENS</td>
<td>38504.74 MW hr / yr</td>
</tr>
<tr>
<td>AENS</td>
<td>2264.985 MW hr / customer.yr</td>
</tr>
</tbody>
</table>

TABLE II
VOLTAGE MAGNITUDE AT EACH BUS

<table>
<thead>
<tr>
<th>Bus</th>
<th>Voltage magnitude without Capacitor placement</th>
<th>Voltage magnitude with Capacitor Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areekode</td>
<td>196.6778</td>
<td>201.7466</td>
</tr>
<tr>
<td>Brahmapuram</td>
<td>212.652</td>
<td>213.026</td>
</tr>
<tr>
<td>Edamon</td>
<td>195.5756</td>
<td>195.7384</td>
</tr>
<tr>
<td>Edappon</td>
<td>193.3294</td>
<td>193.4922</td>
</tr>
<tr>
<td>Kalamassery</td>
<td>214.7552</td>
<td>214.9356</td>
</tr>
<tr>
<td>Kanhirode</td>
<td>191.3274</td>
<td>199.9668</td>
</tr>
<tr>
<td>Kaniampetta</td>
<td>206.4766</td>
<td>208.5314</td>
</tr>
<tr>
<td>Kundara</td>
<td>196.6118</td>
<td>196.7768</td>
</tr>
<tr>
<td>Malapparambu</td>
<td>206.4766</td>
<td>208.5314</td>
</tr>
<tr>
<td>Mylatti</td>
<td>189.4618</td>
<td>202.0788</td>
</tr>
<tr>
<td>Nallalom</td>
<td>195.4305</td>
<td>200.4662</td>
</tr>
<tr>
<td>New Pallom</td>
<td>211.2792</td>
<td>211.4574</td>
</tr>
<tr>
<td>Palakkad</td>
<td>206.5624</td>
<td>208.6172</td>
</tr>
<tr>
<td>Poovanthuruthu</td>
<td>202.5628</td>
<td>202.7344</td>
</tr>
<tr>
<td>Pothencode</td>
<td>193.4922</td>
<td>194.975</td>
</tr>
<tr>
<td>Shornur</td>
<td>201.5684</td>
<td>205.0642</td>
</tr>
<tr>
<td>Thaliparamba</td>
<td>190.1526</td>
<td>200.7456</td>
</tr>
<tr>
<td>Vadakara</td>
<td>193.6968</td>
<td>200.4992</td>
</tr>
</tbody>
</table>

Fig.2. One line diagram of the 220KV system

For the improvement of voltage profile Capacitor placement is done. The capacitor placement have the advantages like increased voltage level at load, reduction in the line current, reduction in system losses and improvement in power factor. It has less loading on system equipment and so the investment per KW of the load is consequently reduced.
CONCLUSION

Power flow or load-flow studies are important for planning future expansion of power systems as well as in determining the best operation of existing systems. The principal information obtained from the power flow study was the magnitude and phase angle of the voltage at each bus, and the real and reactive power flowing in each line. Load flow analysis was conducted on the 220KV substations in Kerala Power System and the voltage profile was analyzed. Static capacitor banks for reactive power compensation were found to be effective in improving the voltage profiles. The load flow analysis was done using MATLAB and ETAP software. The various reliability indices were also obtained from the ETAP software.

ACKNOWLEDGMENT

We would like to thank all the faculties and students of Electrical and Electronics Engineering Department, Thangal Kunju Musaliair College of Engineering management for their guidance and support and facilities extended to us.

REFERENCES

AUTHOR BIOGRAPHY

Dr. Abdul Jaleel. J received the Bachelor degree in Electrical Engineering from University of Kerala, India in 1994. He received the M.Tech degree in Energetics from Regional Engineering College Calicut, Kerala, India in 2002, and PhD from WIU, USA in 2006. He joined the EEE department of TKM College of Engineering as faculty member in 1990. He was with Saudi Aramco in 1996 to 1998 and worked in the field of power generation, transmission, distribution and instrumentation in the Oil and Gas sector of Saudi Arabia. He was with Water Supply department of Sultanate of Oman in 1985 to 1986 and worked with the maintenance of Submersible bore-well pumps and power supplies. He was with Saudi Electricity Company in 1979 to 1985 and worked in the Generation, Transmission and distribution fields. He worked with project management, Quality Management and he is a certified Value Engineer and Auditor for QMS. He is a consultant for Oztern.Microsoft, Technopark, Kerala and Consultant for Educational Projects of KISAT and MARK Research and Education Foundation.

Currently he is a P.G. Coordinator of M. Tech Programme in the TKM College of Engineering under University of Kerala and DC member VIT University, Research Supervisor in Anna University & Karppagam University. His main areas of research are power system control & optimization, power system reliability, voltage stability, computer aided design and analysis.

Shabna S received B.Tech in Electrical and Electronics Engineering from Muslim Association College of Engineering, Trivandrum. Currently she is doing M.Tech Industrial Instrumentation and Control at TKM college of Engineering, Kollam.