

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 11, May 2014

79

 Abstract— The development is taking place in the software

engineering, especially in the field of development there is a need

to use artificial intelligence techniques for building software

automatically converts pseudo code to a source code by write it in

a particular language based on neural network techniques. In this

research, three techniques are used of neural networks to select

the best neural network for converting pseudo code to source code

written in Matlab version (R2013a). Depended on training and test

time the best neural network type for convert pseudo code to

source code is a cascade back propagation.

 Index Terms—pseudo code, Back-propagation neural

network, Cascade-forward back propagation neural network,

Radial basis function networks, and source code.

I. INTRODUCTION

Design phase is one phase‟s software development life

cycle refers to the set of activities that includes specifying an

algorithm for each program component the design activity

that follows is limited to specifying an algorithm for this

program [1]. An algorithm is a step-by-step procedure for

solving a problem or accomplishing some end, especially by

a computer. A good algorithm must [1]:

1. list the activities that need to be carried out

2. List those activities in the proper order.

There are two methods of algorithm description: pseudo

code and flowcharts [2]. Pseudo code derived from „pseudo‟

which means imitation and „code‟ means instruction [3].

Pseudo code is a compact and informal high-level description

of a computer programming algorithm that uses the structural

conventions of a programming language, but is intended for

human rather than machine reading [4]. Program Design

Language (PDL), also called structured English or pseudo

code [5]. The after design phase in software development life

cycle is implementation phase is to develop a program that

runs correctly on a computer the design phase provided a

solution in the form of a pseudo code algorithm, the

implementation phase Translate an algorithm into a

programming language[1].

II. ADVANTAGE AND LIMITATIONS OF

PSEUDOCODE

There are several Advantage and Limitations of pseudo

code can be below [3].

A. Advantage

1. Its language independent nature helps the

programmer to express the design in plain

natural language.

2. Based on the logic of a problem it can be

designed without concerning the syntax or any

rule.

3. It can be easily translated into any programming

language.

4. It is compact in nature and can be easily modify.

B. Limitations [3]:

1. It is unable to provide the visual presentation of

the program logic.

2. It has not any standard format or syntax of

writing.

3. It cannot be compiled or executed.

III. PREVIOUS STUDIES

Suvam mukherjee, Tamal Chakrabarti, 2011, suggested

tried to present a translation process where the user presents a

pseudo code as an input, and the output is an implementation

of the pseudo code in a specific programming language. The

pseudo code has to be written in XML use ALGOSmart 60 to

translate this XML pseudo code into C and Java programs

[6].

Anthi Karatrantou, Chris Panagiotakopoulos, 2008,

suggested presents a pilot study which investigated the way

prospective primary school teachers handled the process of

converting an algorithm - pseudo code to a program while

working with the programming environment of the Robolab

programming tool of Lego Mind storms. Conclude the Lego

Mindstorms environment helped and motivated them to

compose the algorithm expressing it with a pseudo code in

every step, and to convert it into a program in a simple and

easy way [7].

Stuart Garner, 2007, suggested concerns the development

of a simple tool that helps students create pseudo code and

convert to the Visual BASIC code. This tool has been used

and evaluated in an introductory programming unit of study.

The results suggest that the tool was easy for students to use

and that it helped support their learning [8].

Anne L. Olsen, 2005, suggested describe an approach that

emphasizes the use of pseudo code in the introductory

Computer Science, this approach is to teach students how to

first develop a pseudo code representation of a solution to a

problem and then create the code from that pseudo code. The

Automatic Pseudocode to Source Code

Translation Using Neural Network Technique
Assistant Professor Dr. safwan Omer Hasson, MSc. Student Fatima Mohammed Rafie Younis

 University of Mosul / College of Computer Sciences and Mathematical / Software engineering

Department

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 11, May 2014

80

describe this use of pseudo code in CSCI 207 as a tool to

teach students problem solving skills [9].

IV. NEURAL NETWORKS

This is mathematical model that tries to simulate the

structure and functionalities of biological neural networks.

Basic building block of every artificial neural network is

artificial neuron, that is, a simple mathematical model

(function). Such a model has three simple sets of rules:

multiplication, summation and activation [10]. Fig. (1)

Shows the function of a single neuron [11].

Fig. (1) A single neuron [11]

there are several neural network can be used to convert

pseudo code to program in matlab languages, which is

explained in sections (A), (B), and (C).

A. Back-propagation neural network

Back propagation use supervised training algorithm for

multi layer network, the input and target output has been

prepared for the training process. A data error in output layer

is counted using network output and target output. The data

errors then back propagated to the hidden layer, resulting in

weight change for the synapses heading to the hidden layer

back propagation network consists of two phases, feed

forward phase and backward phase [12], the Fig. (2) Shows

simple three layer back propagation neural network [13].

Fig. (2) Back propagation network structure [13].

The back-propagation training algorithm are shown below

[13]:

Step 1: Initialization

Set all the weights and threshold levels of the network to

random numbers uniformly distributed inside a small

range.

Step 2: Activation

Activate the back-propagation neural network by applying

inputs and desired outputs

(a) Calculate the actual outputs of the neurons in the

hidden layer:

 (1)

where n is the number of inputs of neuron j in the hidden

layer, and sigmoid is the sigmoid activation function.

(b) Calculate the actual outputs of the neurons in the

output layer

(2)

where m is the number of inputs of neuron k in the output

layer.

Step 3: Weight training

Update the weights in the back-propagation network

propagating backward the errors associated with output

neurons.

(a)

Calculate the error gradient for the neurons in the

output layer:

 (3)

Where

 (4)

Calculate the weight corrections:

 (5)

 Update the weights at the output neurons:

 (6)

(b)

Calculate the error gradient for the neurons in the

hidden layer:

 (7)

Calculate the weight corrections:

 (8)

Update the weights at the hidden neurons:

 (9)

where is a positive number (0 <= <1) called the

momentum constant.

Typically, the momentum constant is set to 0.95.

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat the

process until the selected error criterion is satisfied.

B. Cascade-forward back propagation neural network

Cascade-forward back propagation neural network is

similar to BPNN but it includes a weight connection from the

input layer to each layer and from each layer to the successive

layers. The fig. (3) shows a three-layer network has

connections from layer 1 to layer 2, layer 2 to layer 3, and

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 11, May 2014

81

layer 1 to layer 3, In the cascading neural network, there are

three types of nodes: input nodes, inner nodes and output

nodes, The three-layer network also has connections from the

input to all three layers. The additional connections might

improve the speed at which the network learns the desired

relationship [14].

Fig. (3) Cascade-forward neural network [14].

C. Radial basis function networks

RBF network includes three basic layers, whose structure

is shown in Fig. (4). each layer has a completely different role

[15].

Fig. (4) Radial basis function neural network structure [15].

The input neurons do not perform any processing. The

neurons in the output layer produce the weighted sum of their

inputs, which is usually passed through a linear transfer

function, the neurons in the hidden layer, sometimes called

the prototype layer, behave differently.

For an input vector (x1, x2, …xn), a neuron i in the hidden

layer produces an output, yi, given by as mentioned in [11]:

 (10)

2
 (11)

where wij are the weights on the inputs to neuron i, and fr is

a symmetrical function known as the radial basis function

(RBF). The most commonly used RBF is a Gaussian

function:

 (12)

Where i is the standard deviation of a distribution

described by the function. Each neuron, i, in the hidden layer

has its own separate value for i [11].

During unsupervised learning, the network adjusts the

weights — more correctly called centers in an RBF

network — so that each point (wi1, wi2,…win) represents

the center of a cluster of data points in pattern space [11].

Training of an RBFN consists of two phases [16]:

(1) Adjusting the RBF of the hidden neurons by

applying a statistical clustering method; this

represents an unsupervised learning phase.

(2) Applying gradient descent (e.g., the back

propagation algorithm) or a linear regression

algorithm for adjusting the second layer of

connections; this is a supervised learning phase.

During training, the following parameters of the RBFN are

adjusted [16]:

 The n-dimensional position of the centers ci of the RBFi

(particular intermediate node i). This can be achieved

by using the k-means clustering algorithm the

algorithm finds k (number of hidden nodes) cluster

centers which minimize the average distance between

the training examples and the nearest centers.

 The deviation scaling parameter i for every RBFi; it is

defined by using average distance to the nearest

m-cluster centers:

 (12)

Where cip is the center of the pth cluster near to the cluster

i.

 The weights of the second layer connections.

The recall procedure finds through the functions RBFi

how close an input vector x' is to the centers ci and then

propagates these values to the output layer.

V. PROPOSED ALGORITHM

Conventions that must be followed when writing the pseudo

code:
1. Write keywords of the pseudo code in lower

case.

2. Each statement in pseudo code should express

just one action for the computer.

3. Variable, constant and function names may be

more than one word then they are joined with an

underscore.

4. After and before the any word in pseudo code

text has only one space or spatial character.

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 11, May 2014

82

5. Summations and counters must be initialized to

zero, and other variables that require initial

values must also be initialized.

6. When write the function in the another text not

the test call function and store the function

same the name function in pseudo code.

 The steps of training neural network are explained below:

1. The definition of a matrix containing binary numbers,

each number represents a keyword in pseudo code.

2. Initialize weights (random values), set learning rate to

0.001, and error rate to 0.001.

3. Broadcast each binary numbers of the matrix to input

layer.

4. Applied training of the neural network to get the

output throw the hidden layer using equations 1 and

2.

5. Compare the actual output of the neural network with

target, show table 1, if match then stop; otherwise

adjusting the weights using equations 3 to 9 and

continue the learning of the neural network through

steps 4 and 5 again.

6. Store the weights.

The training algorithm of Cascade neural network is same

to back propagation neural network but the different the input

confectioned to all successive layers. The algorithm of the

Radial basis function networks are same steps but different

equations 10 to 12 used between input layer to hidden layer.

The steps translate the pseudo code to source code as show

below:

1. Open text file for reading (pseudo code).

2. Read one line at each time and split the line into

keywords.

3. Check each keyword if exist in the array then take the

keyword binary number else the keyword write into

output text (program) directly.

4. Load the store weights and apply neural network

algorithm to get the output using equation 1 to 2.

5. Print the output of neural network into output file

(program).

6. Repeat steps 2 to step 6 until read each line into text

file.

The fig. (5) is shown the training of the back propagation

neural network:

Fig. (5) Flowchart the back propagation neural network

training for proposed system

When the fig. (6) Explain the process for converting pseudo

code to source code:

Start

The definition of a matrix

containing binary numbers

Generating Initialize random

weights

Learning rate = 0.001

Error rate = 0.001

Enter the binary number and

weights to input layer

Apply algorithm neural

network to get the output by

apply equation 1 and 2

Adjust weights

by apply

equation 3 to 9

The output

match to

the target

Save the weights

End

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 11, May 2014

83

Fig. (6) Flowchart for applying back propagation neural

network to convert pseudo code into source code

Table 1. Training pairs of neural networks (a) input (pseudo

code) and (b) target (matlab program language).

(a) Input (b) Target

1. Selection statement

i. select case, case where, select,

or case of.

case else, others, or default.

case close, end switch, end select,

end case, end if, or endif.

case where text expression

case value1

Block1

case value2:

Block2

case value3

Block3

default

Block4

Endcase

ii. if / then*

if condition then

true block

end if

if condition then

true block

else

false block

endif

if condition1 then

true block

elseif condition2

true block

else

false block

endif

switch

otherwise

end

switch variable

case 1

any statement;

case 2

any statement;

case 3

any statement;

otherwise

any statement;

end

if b~=0

any statement;

end

if a<0

any statement;

else

any statement;

end

if c==1

any statement;

elseif c<1

any statement;

else

any statement;

end

2. Loop statement

i. dowhile or do while

enddo, end do, end while,

endwhile, endloop, end loop,

next, endfor, or end for.

dowhile condition

Block

enddo

ii. do for, dofor, loop,

loop for, do forever, or doforever.

to, downto, ; , down to, or step

dofor i= start to finish step

number

Block

Endfor

while

end

while variable>10

any statement;

end

for

:

for variable =1:2:10

any statement;

end

3. Sequence statement

i. write, output ,or print:

write variable

write " any statement "

ii. read or enter:

read variable

iii. procedure, method, or

subprogram.

mothed sum (variable1,

disp

disp(variable);

disp(' any statement');

input('')

variable =input('');

function

function sum (variable1,

Apply neural network to get

the output

Split the line into keywords

Taking the keyword

binary number

Check each

keyword if

exist in the

array

Open the text file

Start

Read one line at

each time

Load the weights

End

Print the keyword of neural

network into output text file

(program).

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 11, May 2014

84

variable2)

variable3 := variable1+ variable2

write variable3

mothed sum (variable1,

variable2)

variable3 := variable1+ variable2

return variable3

iv. comment or //

// any statement

v. :=, is assigned or <-

variable:= value

set or initialize

set variable to value

vi. not or negation:

not variable

vii. <> or not equal

variable1 <> variable 2

viii. equal to

variable1 equal variable 2

ix. or:

variable1> variable 2

 or variable 2

< variable3

x. And:

variable1> variable 2

 and variable 2

< variable3

xi. exclusive-or:

variable3 := variable1

exclusive-or variable 2

xii. exponential, or **:

variable3 := variable1

exponential variable 2

xiii. remainder, integer modulo,

integer remainder, or modulus:

variable3 := variable1

exponential variable 2

xiv. add or addition

variable3 := variable1 add

variable 2

xv. sub or subtraction:

variable3 := variable1 sub

variable 2

xvi. div, division, or divide:

variable3 := variable1 div

variable 2

xvii. multiply, mult, or

multiplication:

variable3 := variable1 multiply

variable 2

xviii. greater than

variable2)

variable3 := variable1+

variable2;

disp (variable3)

function variable3

=sum(variable1,

variable2)

variable3 := variable1+

variable2;

%

% any statement

=

variable= value;

=

variable = value

~

~ variable

~=

variable1~= variable 2

==

variable1== variable 2

||

variable1> variable 2

 || variable 2

< variable3

&&

variable1> variable 2

&& variable 2

< variable3

xor

variable3=xor (variable1 ,

variable 2);

^

variable3= variable1 ^

variable 2;

rem

variable3= rem

(variable1 , variable 2);

+

variable3 := variable1 +

variable 2;

-

variable3 := variable1 -

variable 2;

/

variable3 := variable1 /

variable 2;

*

variable3 := variable1 *

variable3 := variable1 greater

than variable 2

xix. greater than or equal to

variable3 := variable1 greater

than or equal to variable 2

xx. less than

variable3 := variable1 less than

variable 2

xxi. less than or equal to

variable3 := variable1 less than or

equal to variable 2

xxii exit

variable 2;

>

variable3 := variable1

>variable 2;

>=

variable3 := variable1 >=

variable 2;

<

variable3 := variable1<

variable 2;

<=

variable3 := variable1

<=variable 2;

break

*the if/then not enters to the neural network because the same

input and output.

The following example is shown the result of proposed

algorithm when applying neural network techniques to

convert pseudocode into matlab program automatically:

Pseudocode

read b,c

do for i=1 to 5

if b greater than i then

b is assigned b remainder c

print "this is the b" b

else

b<-b add 5

print b

endif

end for

source code

clc

clear all

close all

b=input('');

c=input('');

for i=1 : 5

if b > i

b = rem(b,c);

disp('this is the b');

disp(b);

else

b=b + 5;

disp(b);

end

end

VI. CONCLUSION

Depending the on training and testing time the best type of

neural network for converting pseudo code to program is a

cascade back propagation neural network. As shown table

(2).

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 11, May 2014

85

The algorithm of neural networks are shared in the same

input layer (5 nodes), one hidden layer (21 nodes), the output

layer (5 nodes), and the same error rate is 0.001. but the Back

propagation and Cascade back propagation is used sigmoid

activation functions to get the actual output, while the Radial

basis function used the linear activation functions.

Table (2): The training and test time of neural network

algorithms

Neural network

algorithm

Train time

(seconds)

Time recall

(seconds)

Back propagation 2.5 0.0156

Cascade Back

propagation
2.4 0.0156

matlab Radial basis

function
4.2 0.4368

 REFERENCES
[1] Mercer Rick, “Introduction to Computer Science", Citeseer,

pp.4.

[2] Methods of Algorithm Description ", Second Edition, Board of

Studies NSW, pp.6, March 1995.

[3] Prof. Kakati Mahanta Anjana, Prof. Kr. Deka Jatindra, and

Prof. Goswami Diganta, “ Master of Computer Applications

COMPUTER PROGRAMMING USING C”, Registrar on

behalf of the Krishna Kanta Handiqui State Open University,

pp.(14,15), July 2011.

[4] Prof. Gabriele Edward, “Journal of Research Administration”,

the Society of Research Administrators International, pp. (16),

Volume XLI, Number 3, 2010.

[5] Roger S. pressman, Ph.D., “Software engineering a

practitioners approach”, 7th edition, McGraw-Hill Company,

pp.301, 2010.

[6] Mukherjee Suvam and Chakrabarti Tamal, “Automatic

Algorithm Specification To Source Code Translation

Mukherjee”, Indian Journal Of Computer Science And

Engineering (Ijcse), Vol. 2 No. 2 Apr-May 2011.

[7] Karatrantou Anthi and Panagiotakopoulos Chris, “Algorithm,

Pseudo-Code and Lego Mind storms Programming”,

Proceedings of International Conference on Simulation and

Programming for Autonomous Robots/Teaching with

Robotics: Didactic Approaches and Experiences, 2008.

[8] Garner Stuart, “A program design tool to help novices learn

programming”, ICT: Providing choices for learners and

learning. Proceedings ascilite Singapore, 2007.

[9] Olsen Anne L, “Using pseudo code to teach problem solving”,

Journal of Computing Sciences in Colleges, December 2005.

[10] Krenker Andrej, Bester Janez, and Kos Andrej, “ARTIFICIAL

NEURALNETWORKS-METHODOLOGICAL ADVANCES

AND BIOMEDICAL APPLICATIONS Introduction to the

Artificial Neural Networks”, InTech, pp.1, 2011.

[11] Hopgood Adrian A., “Intelligent Systems for Engineers and

Scientists”, 2nd ed, CRC Press, pp.(210,229-231), 2001.

[12] Yeremia Hendy, Yuwono Niko Adrianus, Raymond Pius, and

Budiharto Widodo, “GENETIC ALGORITHM AND

NEURAL NETWORK FOR OPTICAL CHARACTER

RECOGNITION”, JCS, pp.(7), 2013.

[13] Negnevitsky Michael,“ Artificial Intelligence A Guide to

Intelligent Systems ”, Second Edition, , pp.(176,185), 2005.

[14] AL-Allaf Omaima NA and AbdAlKader Shahlla A,

“NONLINEAR AUTOREGRESSIVE NEURAL NETWORK

FOR ESTIMATION SOIL TEMPERATURE: A

COMPARISON OF DIFFERENT OPTIMIZATION

NEURAL NETWORK ALGORITHMS”, UbiCC Journal,

pp.45, 2011.

[15] Chen Dao-jiong and Zhao, Peng, “Study of the fault diagnosis

method based on RBF neural network”, Artificial Intelligence,

Management Science and Electronic Commerce (AIMSEC),

2011 2nd International Conference on, IEEE, pp. (4350), 2011.

[16] Kasabov Nikola K., “Foundations of neural networks, fuzzy

systems, and knowledge engineering ", Marcel Alencar, 2nd

printing, pp.284, 1998.

