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I. INTRODUCTION 

In 1922, a famous contraction principle known as 

Banach Contraction Principle [3] in metric space came 

into existence which became the active field of 

researchers for research to prove a number of fixed point 

theorems. In 2000, the concept of dislocated metrics was 

studied under the name of metric domains in the context 

of domain theory in [2] and notion of dislocated metric 

space came up in which self distance of a point need not 

be equal to zero. This concept was put forward by 

P.Hitzler and A.K.Seda [8] who also generalized the 

famous Banach Contraction Principle in this space. 

Mathematicians like C. T. Aageet al. [4], A. Isufati [1] 

,K. Jha et al.[6], K. P. R. Rao et al.[7].established some 

important fixed point theorems in dislocated metric space 

with different conditions. Here we are proving a common 

fixed point theorem for six self maps using the concept of 

occasionally weak compatibility. 

 

II. PRELIMINARIES 

Def.2.1.[5] Let X be a non-empty set and let d: X xX  

[0, ) be a function satisfying following conditions: 

i. d(x, y)  = d(y, x) , 

ii. d(x, y)  = d(y, x) = 0 implies x = y, 

iii. d(x, y)  d(x, z) +d(z, y) , for  all x, y, z 

 X.  

Then d is called a dislocated metric (or d- metric) on X. 

Def.2.2. [5] A sequence { } in a d- metric space (X, d) 

is called a Cauchy sequence if for given >0, there 

corresponds  N such that for all m, n , d 

( ) <  

Def.2.3.[5] Asequence { } in d-metric space converges 

with respect to d (or in d) if there exists x  X such that d 

( , x)  0as n  

Def.2.4.[5] Ad-metric space (X, d) is said to be complete 

if every Cauchy sequence in it is convergent with respect 

to d. 

Def.2.5. [5] Let (X, d) be d-metric space. A map T: X  

X is called contraction if there exists a number  with 

0 <1 such that d (Tx, Ty) d(x, y). 

Lemma.2.6. Let (X, d) be a d-metric space. If T: X  X 

is a contraction function, then { )} is a Cauchy 

sequence for each X. 

Lemma.2.7. [5] Limits in a d- metric space are unique. 

Def.2.9.Let f and g be two self mappings of a metric 

space (X, d), thenC (f, g) ={u  X: fu =gu}. 

Def.2.10. Two self-maps are said to be occasionally 

weakly compatible if there exists at least one x X, for 

which f(x) = g(x) implies fg(x) = gf(x). 

 

III. MAIN THEOREM 

Theorem 3.1Let A, B, P, Q, S and T be six self-maps of a 

complete d-metric space(X, d) satisfying: 

i. P(X)⊆ST(X) and Q(X)⊆AB(X), 

ii. C(P, AB)  and C(Q, ST) = , 

iii. The pair (P,AB)and (Q, ST) are occasionally 

weakly  compatible, 

iv. d(Px, Qy) {min[ d(ABx, STy), d(Px, ABx), 

d(Qy,STy)]}. 

For all where x, y X, where :  is 

monotonically non-decreasing and <  for all 

t>0. 

Then P, AB, Qand ST have a unique common fixed point. 

Proof: Let  be any arbitrary point in X. Since P(X) ⊆ 

ST(X) and Q(X) ⊆AB(X). 

Therefore define two sequences { } and { } in X 

such that  

 = ST = P , 

 = AB = Q  for n = 0, 1, 2… 

Now d ( ) =d (P Q ) 
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{min [d (AB , ST ), d 

(P , AB ), d (Q , ST )]}. 

{min [d 

( . 

  = {min [d 

( . 

If min [d 

( = . 

Then d 

( ) {

. 

Which is a contradiction, thus min [d 

( = d (  

Therefore we get d ( ) d (  

That is d ( )  [d (  

[d ( . 

Now for n, m  N, n< m, we have  

d ( =  d( + d( +……..+ 

d(  

+ + 

………..+ . 

 [d ( . 

  0 as n, m  

Hence { } is a Cauchy sequence in the dislocated 

metric space X. 

Therefore there exists u X such that {  converges to 

u.  

Thus {P }, {ST }, {AB } and {Q } 

converge to u. 

Since P(X)⊆ST(X), thus there exists z  X such that u = 

STz. 

Now d (u, Qz) = d (P , Qz) min [d 

(AB , STz), d (P , AB ), d (Qz,STz)]}. 

min [d(u, u), d(u,u), d(Qz,u)]}. 

Since d (u, u) d (u, Qz) +d (Qz, u). 

Thus d (u, Qz) min [2d (Qz,u), d(Qz,u)]}. 

This implies d (u, Qz) [d (u, Qz)]. 

That is d (u,Qz) d (u, Qz) a contradiction. 

Thus Qz = u. 

Hence STz = Qz = u. 

Thus C (ST, Q)  

Also Q(X) ⊆AB(X), therefore there exists w  X such 

that u = ABw. 

Now d (Pw, u) =d (Pw, Q ) 

 {min [d(ABw, ST ), d(Pw, ABw), 

d(Q ,ST )]}. 

  min [d(u, u), d(Pw,u), d(u,u)]}. 

  [d (Pw,u)]. 

Thus d (Pw, u) d (Pw,u) a contradiction. 

Therefore Pw= ABw =u. 

Thus C (P, AB)  

Thus we have STz = Qz = Pw= ABw =u. 

As the pair (P, AB) occasionally weakly compatible andC 

(P, AB)  this implies that there exists w C (P, AB), 

such that PABw= ABPw 

This implies Pu = ABu. 

This implies u is coincidence point of P, AB. 

Similarly the pair (Q, ST) is occasionally weakly 

compatible and C (Q, ST) = , thus there exists v C (Q, 

ST) such that STQv= QSTv 
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This implies STu= Qu. 

This shows u is coincidence point of Q and ST. 

Now to show that u is coincidence point of AB, ST, P and 

Q. 

For this put x = u and y =  in (IV), we get  

d (Pu Q )  {min [d(ABu, ST ), d(Pu, 

ABu), d(Q ,ST )]}. 

Take the limit as n , we get  

d (Pu u)  {min [d(Pu,u), d(Pu, Pu), d(u,u)]}. 

As d (Pu, Pu) d (Pu, u) +d (u, Pu). 

Thus d (Pu, u) d (Pu, u)] d (Pu, u). 

which is a contradiction. 

Hence Pu = u. 

But ABu = Pu. 

Therefore ABu= Pu = u. 

This shows u is coincidence point of AB and P. 

Next to prove that u is also the coincidence point of Q 

and ST. 

For this put x=  and y = u in (IV), we get 

d (P , Q u) {min[ d(AB , ST u), 

d(P , AB ), d(Q u,ST u)]}. 

Now take the limit as n , we get  

d(u, Q u) {min[ d(u, Q u), d(u,u), d(Q u,Q 

u)]}. 

Also as above d (Qu, Qu) d (Qu, u) +d (Qu, u) . 

Thus d (u, Qu )  d( u, Qu) which is contradiction . 

Hence Qu = u. 

But Qu = STu. 

Therefore Stu = Qu = u. 

Thus we get Pu = Qu= ABu = STu = u.  

This shows u is fixed point of P, AB, Q and ST. 

IV. UNIQUENESS 

Let u  v be two common fixed points of the mappings 

P, AB, Q and ST. Then we have 

d(u, v) = d(Pu, Qv) {min[ d(ABu, STv), d(Pu, ABu), 

d(Qv,STv)]}. 

 {min[ d(u, v), d(u, u), d(v,v)]}. 

But d(u, u)  d(u, v) +d(v, u) and d(v, v)  d(v, u) +d(u, 

v). 

Thus d (u, v) d (u, v), a contradiction. 

Thus u = v. This proves the result. 
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